The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter.

The murine homologue of the ATF3 transcription factor increases tumor metastases but, surprisingly, represses 72-kDa type IV metalloproteinase (MMP-2) expression. The current study describes a novel mechanism by which ATF3 regulates transcription. Progressive deletions of the MMP-2 promoter indicated a 38-base pair region (-1659/-1622) necessary for the ATF3-mediated repression. This region lacked CREB/AP-1 motifs but contained a consensus p53 motif shown previously to regulate MMP-2 expression. The activity of a p53 response element-driven luciferase reporter was reduced in ATF3- expressing HT1080 clones. Although MMP-2 promoter activity was not repressed by ATF3 in p53-deficient Saos-2 cells, p53 re-expression increased MMP-2 promoter activity and restored the sensitivity to ATF3. The activity of a GAL4-driven reporter in HT1080 cells co-expressing the full-length p53 sequence fused to the GAL4 DNA binding domain was diminished by ATF3. p53-ATF3 protein-protein interactions were demonstrated both in vivo and in vitro. Cell cycle analysis, performed as an independent assay of p53 function, revealed that gamma-irradiation-induced slowed G(2)/M cell cycle progression (attributable to p53) was countered by ATF3. Thus, ATF3 represses MMP-2 expression by decreasing the trans-activation of this gene by p53.[1]

References

 
WikiGenes - Universities