The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Interactions of dietary fat and 2,5-anhydro-D-mannitol on energy metabolism in isolated rat hepatocytes.

The fructose analog 2,5-anhydro-D-mannitol (2,5-AM) stimulates feeding in rats by reducing ATP content in the liver. These behavioral and metabolic effects occur with rats fed a high-carbohydrate/low-fat (HC/LF) diet, but they are prevented or attenuated when the animals eat high-fat/low-carbohydrate (HF/LC) food. To examine the metabolic bases for this effect of diet, we assessed the actions of 2,5-AM on ATP content, oxygen consumption, and substrate oxidation in isolated hepatocytes from rats fed one of the two diets. Compared with cells from rats fed the HC/LF diet ("HC/LF" cells), cells from rats fed the HF/LC diet ("HF/LC" cells) had similar ATP contents but lower oxygen consumption, decreased fructose, and increased palmitate oxidation. 2,5-AM did not decrease ATP content or oxygen consumption in HF/LC cells as much as it did in HC/LF hepatocytes, and it only affected fructose and palmitate oxidation in HC/LF cells. 31P-NMR spectroscopy indicated that differences in phosphate trapping accounted for differences in depletion of ATP by 2,5-AM. These results suggest that intake of the HF/LC diet prevents the eating response and attenuates the decline in liver ATP by shifting hepatocyte metabolism to favor fat over carbohydrate as an energy-yielding substrate.[1]

References

  1. Interactions of dietary fat and 2,5-anhydro-D-mannitol on energy metabolism in isolated rat hepatocytes. Ji, H., Graczyk-Milbrandt, G., Osbakken, M.D., Friedman, M.I. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2002) [Pubmed]
 
WikiGenes - Universities