The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Caffeine induces TP53-independent G(1)-phase arrest and apoptosis in human lung tumor cells in a dose-dependent manner.

Caffeine is a model radiosensitizing agent that is thought to work by abrogating the radiation-induced G(2)-phase checkpoint. In this study, we examined the effect that various concentrations of caffeine had on cell cycle checkpoints and apoptosis in cells of a human lung carcinoma cell line and found that a concentration of 0.5 mM caffeine could abrogate the G(2)-phase arrest normally seen after exposure to ionizing radiation. Surprisingly, at a concentration of 5 mM, caffeine not only induced apoptosis by itself and acted synergistically to enhance radiation-induced apoptosis, but also induced a TP53-independent G(1)-phase arrest. Examination of the molecular mechanisms by which caffeine produced these effects revealed that caffeine had opposing effects on different cyclin-dependent kinases. CDK2 activity was suppressed by caffeine, whereas activity of CDC2 was enhanced by suppressing phosphorylation on Tyr15 and by interfering with 14-3-3 binding to CDC25C. These data indicate that the effect of caffeine on cell cycle checkpoints and apoptosis is dependent on dose and that caffeine acts through differential regulation of cyclin-dependent kinase activity.[1]

References

 
WikiGenes - Universities