The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Radiation, Ionizing

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Radiation, Ionizing

 

Psychiatry related information on Radiation, Ionizing

 

High impact information on Radiation, Ionizing

  • All amino acid residues in proteins are subject to attack by hydroxyl radicals generated by ionizing radiation; however, the aromatic amino acids and sulfur-containing amino acids are most sensitive to oxidation.(ABSTRACT TRUNCATED AT 400 WORDS)[8]
  • Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation [9].
  • To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response-including the S-phase checkpoint pathways-to delay DNA replication [10].
  • In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM [10].
  • FA cells are hypersensitive to mitomycin C (MMC), while AT cells are hypersensitive to ionizing radiation (IR) [11].
 

Chemical compound and disease context of Radiation, Ionizing

 

Biological context of Radiation, Ionizing

 

Anatomical context of Radiation, Ionizing

 

Associations of Radiation, Ionizing with chemical compounds

 

Gene context of Radiation, Ionizing

 

Analytical, diagnostic and therapeutic context of Radiation, Ionizing

References

  1. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Stewart, G.S., Maser, R.S., Stankovic, T., Bressan, D.A., Kaplan, M.I., Jaspers, N.G., Raams, A., Byrd, P.J., Petrini, J.H., Taylor, A.M. Cell (1999) [Pubmed]
  2. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Baskaran, R., Wood, L.D., Whitaker, L.L., Canman, C.E., Morgan, S.E., Xu, Y., Barlow, C., Baltimore, D., Wynshaw-Boris, A., Kastan, M.B., Wang, J.Y. Nature (1997) [Pubmed]
  3. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Bakkenist, C.J., Kastan, M.B. Nature (2003) [Pubmed]
  4. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Hahn, H., Wojnowski, L., Zimmer, A.M., Hall, J., Miller, G., Zimmer, A. Nat. Med. (1998) [Pubmed]
  5. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Garcia-Higuera, I., Taniguchi, T., Ganesan, S., Meyn, M.S., Timmers, C., Hejna, J., Grompe, M., D'Andrea, A.D. Mol. Cell (2001) [Pubmed]
  6. Perturbations of cell-cycle progression in gamma-irradiated ataxia telangiectasia and Huntington's disease cells detected by DNA flow cytometric analysis. Imray, F.P., Kidson, C. Mutat. Res. (1983) [Pubmed]
  7. The role of endogenous hormones in the etiology and prevention of breast cancer: the epidemiological evidence. Muti, P. Ann. N. Y. Acad. Sci. (2004) [Pubmed]
  8. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Stadtman, E.R. Annu. Rev. Biochem. (1993) [Pubmed]
  9. The mismatch repair system is required for S-phase checkpoint activation. Brown, K.D., Rathi, A., Kamath, R., Beardsley, D.I., Zhan, Q., Mannino, J.L., Baskaran, R. Nat. Genet. (2003) [Pubmed]
  10. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J., Bartek, J. Nat. Genet. (2002) [Pubmed]
  11. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Taniguchi, T., Garcia-Higuera, I., Xu, B., Andreassen, P.R., Gregory, R.C., Kim, S.T., Lane, W.S., Kastan, M.B., D'Andrea, A.D. Cell (2002) [Pubmed]
  12. An exploratory case-control study of brain tumors in adults. Burch, J.D., Craib, K.J., Choi, B.C., Miller, A.B., Risch, H.A., Howe, G.R. J. Natl. Cancer Inst. (1987) [Pubmed]
  13. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. Henderson, D.S., Banga, S.S., Grigliatti, T.A., Boyd, J.B. EMBO J. (1994) [Pubmed]
  14. In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse. Halpern, H.J., Yu, C., Barth, E., Peric, M., Rosen, G.M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  15. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies. Basu, A.K., Loechler, E.L., Leadon, S.A., Essigmann, J.M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  16. A highly conserved endonuclease activity present in Escherichia coli, bovine, and human cells recognizes oxidative DNA damage at sites of pyrimidines. Doetsch, P.W., Henner, W.D., Cunningham, R.P., Toney, J.H., Helland, D.E. Mol. Cell. Biol. (1987) [Pubmed]
  17. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Santana, P., Peña, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z., Kolesnick, R. Cell (1996) [Pubmed]
  18. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Carney, J.P., Maser, R.S., Olivares, H., Davis, E.M., Le Beau, M., Yates, J.R., Hays, L., Morgan, W.F., Petrini, J.H. Cell (1998) [Pubmed]
  19. Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Barlow, C., Brown, K.D., Deng, C.X., Tagle, D.A., Wynshaw-Boris, A. Nat. Genet. (1997) [Pubmed]
  20. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Wong, K.K., Chang, S., Weiler, S.R., Ganesan, S., Chaudhuri, J., Zhu, C., Artandi, S.E., Rudolph, K.L., Gottlieb, G.J., Chin, L., Alt, F.W., DePinho, R.A. Nat. Genet. (2000) [Pubmed]
  21. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Gao, Y., Sun, Y., Frank, K.M., Dikkes, P., Fujiwara, Y., Seidl, K.J., Sekiguchi, J.M., Rathbun, G.A., Swat, W., Wang, J., Bronson, R.T., Malynn, B.A., Bryans, M., Zhu, C., Chaudhuri, J., Davidson, L., Ferrini, R., Stamato, T., Orkin, S.H., Greenberg, M.E., Alt, F.W. Cell (1998) [Pubmed]
  22. p53 is required for radiation-induced apoptosis in mouse thymocytes. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A., Jacks, T. Nature (1993) [Pubmed]
  23. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I., McKinnon, P.J. Science (1998) [Pubmed]
  24. Ionizing radiation decreases veratridine-stimulated uptake of sodium in rat brain synaptosomes. Wixon, H.N., Hunt, W.A. Science (1983) [Pubmed]
  25. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. Haimovitz-Friedman, A., Kan, C.C., Ehleiter, D., Persaud, R.S., McLoughlin, M., Fuks, Z., Kolesnick, R.N. J. Exp. Med. (1994) [Pubmed]
  26. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Essers, J., Hendriks, R.W., Swagemakers, S.M., Troelstra, C., de Wit, J., Bootsma, D., Hoeijmakers, J.H., Kanaar, R. Cell (1997) [Pubmed]
  27. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Lim, D.S., Kim, S.T., Xu, B., Maser, R.S., Lin, J., Petrini, J.H., Kastan, M.B. Nature (2000) [Pubmed]
  28. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Mol, C.D., Kuo, C.F., Thayer, M.M., Cunningham, R.P., Tainer, J.A. Nature (1995) [Pubmed]
  29. Defective DNA repair and increased lethality in ataxia telangiectasia cells exposed to 4-nitroquinoline-1-oxide. Smith, P.J., Paterson, M.C. Nature (1980) [Pubmed]
  30. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Dulić, V., Kaufmann, W.K., Wilson, S.J., Tlsty, T.D., Lees, E., Harper, J.W., Elledge, S.J., Reed, S.I. Cell (1994) [Pubmed]
  31. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Li, S., Ting, N.S., Zheng, L., Chen, P.L., Ziv, Y., Shiloh, Y., Lee, E.Y., Lee, W.H. Nature (2000) [Pubmed]
  32. MDC1 is a mediator of the mammalian DNA damage checkpoint. Stewart, G.S., Wang, B., Bignell, C.R., Taylor, A.M., Elledge, S.J. Nature (2003) [Pubmed]
  33. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Bai, Y., Symington, L.S. Genes Dev. (1996) [Pubmed]
  34. Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Gasior, S.L., Wong, A.K., Kora, Y., Shinohara, A., Bishop, D.K. Genes Dev. (1998) [Pubmed]
  35. Veno-occlusive disease of the liver after chemotherapy of acute leukemia. Report of two cases. Griner, P.F., Elbadawi, A., Packman, C.H. Ann. Intern. Med. (1976) [Pubmed]
  36. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Brodsky, M.H., Weinert, B.T., Tsang, G., Rong, Y.S., McGinnis, N.M., Golic, K.G., Rio, D.C., Rubin, G.M. Mol. Cell. Biol. (2004) [Pubmed]
  37. hSnm1 colocalizes and physically associates with 53BP1 before and after DNA damage. Richie, C.T., Peterson, C., Lu, T., Hittelman, W.N., Carpenter, P.B., Legerski, R.J. Mol. Cell. Biol. (2002) [Pubmed]
  38. Wild-type p53 suppresses transcription of the human O6-methylguanine-DNA methyltransferase gene. Harris, L.C., Remack, J.S., Houghton, P.J., Brent, T.P. Cancer Res. (1996) [Pubmed]
 
WikiGenes - Universities