The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications.

Two structures of Escherichia coli soluble inorganic pyrophosphatase (EPPase) complexed with calcium pyrophosphate (CaPP(i)-EPPase) and with Ca(2+) (Ca(2+)-EPPase) have been solved at 1.2 and 1.1 A resolution, respectively. In the presence of Mg(2+), this enzyme cleaves pyrophosphate (PP(i)) into two molecules of orthophosphate (P(i)). This work has enabled us to locate PP(i) in the active site of the inorganic pyrophosphatases family in the presence of Ca(2+), which is an inhibitor of EPPase.Upon PP(i) binding, two Ca(2+) at M1 and M2 subsites move closer together and one of the liganded water molecules becomes bridging. The mutual location of PP(i) and the bridging water molecule in the presence of inhibitor cation is catalytically incompetent. To make a favourable PP(i) attack by this water molecule, modelling of a possible hydrolysable conformation of PP(i) in the CaPP(i)-EPPase active site has been performed. The reasons for Ca(2+) being the strong PPase inhibitor and the role in catalysis of each of four metal ions are the mechanistic aspects discussed on the basis of the structures described.[1]

References

  1. The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications. Samygina, V.R., Popov, A.N., Rodina, E.V., Vorobyeva, N.N., Lamzin, V.S., Polyakov, K.M., Kurilova, S.A., Nazarova, T.I., Avaeva, S.M. J. Mol. Biol. (2001) [Pubmed]
 
WikiGenes - Universities