The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays.

To explore molecular mechanisms of prostate cancer progression, we applied tissue microarrays (TMAs) to analyze expression of candidate gene targets discovered by cDNA microarray analysis of the CWR22 xenograft model system. A TMA with 544 clinical specimens from different stages of disease progression was probed by mRNA in situ hybridization and protein immunohistochemistry. There was an excellent correlation (r = 0.96; n = 16) between the expression levels of the genes in the xenografts by cDNA microarray and mRNA in situ hybridization on a TMA. One of the most highly overexpressed genes in hormone-refractory CWR22R xenografts was the S100P gene. This gene, coding for a calcium signaling molecule implicated in the loss of senescence, was also significantly associated with progression in clinical tumors by TMA analysis (P < 0.001), suggesting dysregulation of this pathway in hormone-refractory and metastatic prostate cancers. Conversely, two genes that were down-regulated during tumor progression in the CWR22 model system were validated in vivo: crystallin mu (CRYM) and a LIM-domain protein LMO4 both showed significantly lower mRNA levels in hormone-refractory tumors as compared with primary tumors (P < 0.001). These results illustrate a strategy for rapid clinical validation at the mRNA and protein level of gene targets found to be differentially expressed in cDNA microarray experiments of model systems of cancer.[1]

References

  1. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Mousses, S., Bubendorf, L., Wagner, U., Hostetter, G., Kononen, J., Cornelison, R., Goldberger, N., Elkahloun, A.G., Willi, N., Koivisto, P., Ferhle, W., Raffeld, M., Sauter, G., Kallioniemi, O.P. Cancer Res. (2002) [Pubmed]
 
WikiGenes - Universities