The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells.

Telomeres in most immortal cells are maintained by the enzyme telomerase, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative Saccharomyces cerevisiae mutants survive, and 10% of them (type II survivors) have unstable telomeres. As in human ALT+ cells, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p. In human cells, ALT involves copying of sequence from a donor to a recipient telomere. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells.[1]

References

  1. Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Varley, H., Pickett, H.A., Foxon, J.L., Reddel, R.R., Royle, N.J. Nat. Genet. (2002) [Pubmed]
 
WikiGenes - Universities