Insulin and TNF alpha induce expression of the forkhead transcription factor gene Foxc2 in 3T3-L1 adipocytes via PI3K and ERK 1/2-dependent pathways.
We have recently identified the winged helix/forkhead gene Foxc2 as a key regulator of adipocyte metabolism that counteracts obesity and diet-induced insulin resistance. This study was performed to elucidate the hormonal regulation of Foxc2 in adipocytes. We find that TNF alpha and insulin induce Foxc2 mRNA in differentiated 3T3-L1 cells with the kinetics of an immediate early response (1-2 h with 100 ng/ml insulin or 5 ng/ml TNF alpha). This induction is, in both cases, attenuated by the PI3K inhibitor wortmannin as well as the MAPK kinase inhibitor PD98059. Furthermore, we show that stimulation of 3T3-L1 adipocytes with phorbol-12-myristate-13-acetate or 8-(4-chlorophenyl)thio-cAMP induces the expression of Foxc2. Interestingly, we find that the basal level of Foxc2 mRNA is down-regulated whereas hormonal responsiveness increases during differentiation of 3T3-L1 from preadipocytes to adipocytes. At the protein level, immunoblots with Foxc2 antibody demonstrated an induction of Foxc2 by insulin and TNF alpha in nuclear extracts of 3T3-L1 adipocytes. EMSA of nuclear proteins from phorbol-12-myristate-13-acetate- and TNF alpha-treated 3T3-L1 adipocytes using a forkhead consensus oligonucleotide revealed specific binding of a Foxc2/DNA complex. In conclusion, our data suggest that insulin and TNF alpha regulate the expression of Foxc2 via a PI3K- and ERK 1/2-dependent pathway in 3T3-L1 adipocytes. Also, signaling pathways downstream of PKA and PKC induce the expression of Foxc2 mRNA.[1]References
- Insulin and TNF alpha induce expression of the forkhead transcription factor gene Foxc2 in 3T3-L1 adipocytes via PI3K and ERK 1/2-dependent pathways. Grønning, L.M., Cederberg, A., Miura, N., Enerbäck, S., Taskén, K. Mol. Endocrinol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg