The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase.

Large amounts of heterologous C-terminally his-tagged SERCA1a Ca(2+)-ATPase were expressed in yeast using a galactose-regulated promoter and purified by Ni(2+) affinity chromatography followed by Reactive red chromatography. Optimizing the number of galactose inductions and increasing the amount of Gal4p transcription factor improved expression. Lowering the temperature from 28 degrees C to 18 degrees C during expression enhanced the recovery of solubilized and active Ca(2+)-ATPase. In these conditions, a 4 l yeast culture produced 100 mg of Ca(2+)-ATPase, 60 and 22 mg being pelleted with the heavy and light membrane fractions respectively, representing 7 and 1.7% of total proteins. The Ca(2+)-ATPase expressed in light membranes was 100% solubilized with L-alpha-lysophosphatidylcholine (LPC), 50% with n-dodecyl beta-D-maltoside (DM) and 25% with octaethylene glycol mono-n-dodecyl ether (C(12)E(8)). Compared to LPC, DM preserved specific activity of the solubilized Ca(2+)-ATPase during the chromatographic steps. Starting from 1/6 (3.8 mg) of the total amount of Ca(2+)-ATPase expressed in light membranes, 800 microg could be routinely purified to 50% purity by metal affinity chromatography and then 200 microg to 70% with Reactive red chromatography. The purified Ca(2+)-ATPase displayed the same K(m) for calcium and ATP as the native enzyme but a reduced specific activity ranging from 4.5 to 7.3 micromol ATP hydrolyzed/min/mg Ca(2+)-ATPase. It was stable and active for several days at 4 degrees C or after removal of DM with Bio-beads and storage at -80 degrees C.[1]

References

  1. Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase. Lenoir, G., Menguy, T., Corre, F., Montigny, C., Pedersen, P.A., Thinès, D., le Maire, M., Falson, P. Biochim. Biophys. Acta (2002) [Pubmed]
 
WikiGenes - Universities