Nongenomic regulation of the kinetics of exocytosis by estrogens.
The role of nongenomic action of estrogens on elicited catecholamine secretion and exocytosis kinetics was studied in perfused rat adrenals and in cultured bovine chromaffin cells. 17beta-Estradiol as well as the estrogen receptor modulators raloxifene and LY117018, but not 17alpha-estradiol, inhibited at the micromolar range the catecholamine output elicited by acetylcholine or high potassium. However, these agents failed to modify the secretion elicited by high Ca(2+) in glands treated with the ionophore A-23187 (calcimycin), suggesting that estrogens did not directly act on the secretory machinery. At the single cell level, estrogens modified the kinetics of exocytosis at nanomolar range. All of the drugs tested except 17alpha-estradiol produced a profound slowing down of the exocytosis as measured by amperometry. LY117018 also reduced the granule content of catecholamines. 17beta-Estradiol reduced the intracellular free Ca(2+) but only at micromolar concentrations, whereas nanomolar concentrations increased the cAMP levels. These effects were reproduced with the nonpermeable drug 17beta-estradiol-horseradish peroxidase and antagonized with nanomolar concentrations of the antiestrogen ICI 182,780 (fulvestrant). Our data suggest the presence of membrane sites that regulate both the exocytotic phenomenon and the total catecholamine release with high and low affinity, respectively.[1]References
- Nongenomic regulation of the kinetics of exocytosis by estrogens. Machado, J.D., Alonso, C., Morales, A., Gómez, J.F., Borges, R. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg