The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold.

Rotavirus, the major cause of life-threatening infantile gastroenteritis, is a member of the Reoviridae. Although the structures of rotavirus and other members of the Reoviridae have been extensively studied, little is known about the structures of virus-encoded non-structural proteins that are essential for genome replication and packaging. The non-structural protein NSP2 of rotavirus, which exhibits nucleoside triphosphatase, single-stranded RNA binding, and nucleic-acid helix-destabilizing activities, is a major component of viral replicase complexes. We present here the X-ray structure of the functional octamer of NSP2 determined to a resolution of 2.6 A. The NSP2 monomer has two distinct domains. The amino-terminal domain has a new fold. The carboxy-terminal domain resembles the ubiquitous cellular histidine triad (HIT) group of nucleotidyl hydrolases. This structural similarity suggests that the nucleotide-binding site is located inside the cleft between the two domains. Prominent grooves that run diagonally across the doughnut-shaped octamer are probable locations for RNA binding. Several RNA binding sites, resulting from the quaternary organization of NSP2 monomers, may be required for the helix destabilizing activity of NSP2 and its function during genome replication and packaging.[1]


  1. Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Jayaram, H., Taraporewala, Z., Patton, J.T., Prasad, B.V. Nature (2002) [Pubmed]
WikiGenes - Universities