The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mutational analysis of human hydroxysteroid sulfotransferase SULT2B1 isoforms reveals that exon 1B of the SULT2B1 gene produces cholesterol sulfotransferase, whereas exon 1A yields pregnenolone sulfotransferase.

As a result of an alternative exon 1, the gene for human hydroxysteroid sulfotransferase (SULTB1) encodes for two peptides differing only at their amino termini. The SULT2B1b isoform preferentially sulfonates cholesterol. Conversely, the SULT2B1a isoform avidly sulfonates pregnenolone but not cholesterol. The outstanding structural feature that distinguishes the SULT2B1 isoforms from the prototypical SULT2A1 isozyme is the presence of extended amino- and carboxyl-terminal ends in the former. Investigating the functional significance of this unique characteristic reveals that removal of 53 amino acids from the relatively long carboxyl-terminal end that is common to both SULT2B1 isoforms has no effect on the catalytic activity of either isoform. On the other hand, removal of 23 amino acids from the amino-terminal end that is unique to SULT2B1b results in loss of cholesterol sulfotransferase activity, whereas removal of 8 amino acids from the amino-terminal end that is unique to SULT2B1a has no effect on pregnenolone sulfotransferase activity. Deletion analysis along with site-directed mutagenesis of SULT2B1b reveal that the amino acid segment 19-23 residues from the amino terminus and particularly isoleucines at positions 21 and 23 are crucial for cholesterol catalysis. In the gene for SULT2B1, exon 1B encodes for only the unique amino-terminal region of SULT2B1b; however, exon 1A encodes for the unique amino-terminal end of SULT2B1a plus an additional 48 amino acids. Thus, if the gene for SULT2B1 employs exon 1B, cholesterol sulfotransferase is synthesized, whereas if exon 1A is used, pregnenolone sulfotransferase is produced.[1]


WikiGenes - Universities