The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Fe(2+)-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7.

TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe(2+) cleaved the backbone of TetA predominantly at a single position, glutamine 225 in transmembrane helix 7. The related class D TetA protein from plasmid RA1 was cut at exactly the same position. There was no cleavage with glycylcycline, an analog of tetracycline that does not bind to TetA. The Fe(2+)-tetracycline complex was not detectably transported by TetA. However, cleavage products of the same size as with Fe(2+) occurred with Co(2+), known to be cotransported with tetracycline. The known substrate Mg (2+)-tetracycline interfered with cleavage by Fe(2+). These findings suggest that cleavage results from binding at a substrate-specific site. Fe(2+) is known to be able to cleave amide bonds in proteins at distances up to approximately 12 A. We conclude that the alpha carbon of glutamine 225 is probably within 12 A of the position of the Fe(2+) ion in the Fe(2+)-tetracycline complex bound to the protein.[1]

References

 
WikiGenes - Universities