The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Formation of methylantimony species by an aerobic prokaryote: Flavobacterium sp.

Pure cultures of an aerobically grown Flavobacterium sp. were shown by hydride generation-cold trap-atomic absorption spectrometry to biomethylate inorganic antimony (III) supplied as potassium antimony tartrate. Growth inhibition of the Flavobacterium sp. by antimony (III) over the range 0-30 mg Sb l(-1) was assessed by optimising parameters within an extended logistic growth model. Antimony (III) concentrations over this range influenced both the extent of antimony biomethylation (up to 4.0 microg l(-1)) and the relative proportions of the involatile mono-, di, and trimethylantimony species formed. Provision of inorganic arsenic (III) alongside antimony (III) enhanced formation of the involatile methylantimony species up to eight-fold. The data are consistent with accumulation of involatile intermediates from an antimony or arsenic biomethylation pathway in culture supernatants. Low yields of methylantimony species (<0.03%) suggest that antimony biomethylation by the Flavobacterium sp. was a fortuitous rather than a primary resistance mechanism for this element. These findings demonstrate that anaerobiosis is not an obligate requirement for methylantimony formation in prokaryotes, thus broadening the range of habitats for potential formation of methylantimony species in nature.[1]

References

  1. Formation of methylantimony species by an aerobic prokaryote: Flavobacterium sp. Jenkins, R.O., Forster, S.N., Craig, P.J. Arch. Microbiol. (2002) [Pubmed]
 
WikiGenes - Universities