The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate.

Oscillatory growth of pollen tubes has been correlated with oscillatory influxes of the cations Ca(2+), H(+), and K(+). Using an ion-specific vibrating probe, a new circuit was identified that involves oscillatory efflux of the anion Cl(-) at the apex and steady influx along the tube starting at 12 microm distal to the tip. This spatial coupling of influx and efflux sites predicts that a vectorial flux of Cl(-) ion traverses the apical region. The Cl(-) channel blockers 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid completely inhibited tobacco pollen tube growth at 80 and 20 microM, respectively. Cl(-) channel blockers also induced increases in apical cell volume. The apical 50 micro m of untreated pollen tubes had a mean cell volume of 3905 +/- 75 microm(3). DIDS at 80 microM caused a rapid and lethal cell volume increase to 6206 +/- 171 microm(3), which is at the point of cell bursting at the apex. DIDS was further demonstrated to disrupt Cl(-) efflux from the apex, indicating that Cl(-) flux correlates with pollen tube growth and cell volume status. The signal encoded by inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)] antagonized pollen tube growth, induced cell volume increases, and disrupted Cl(-) efflux. Ins(3,4,5,6)P(4) decreased the mean growth rate by 85%, increased the cell volume to 5997 +/- 148 microm(3), and disrupted normal Cl(-) efflux oscillations. These effects were specific for Ins(3,4,5,6)P(4) and were not mimicked by either Ins(1,3,4,5)P(4) or Ins(1,3,4,5,6)P(5). Growth correlation analysis demonstrated that cycles of Cl(-) efflux were coupled to and temporally in phase with cycles of growth. A role for Cl(-) flux in the dynamic cellular events during growth is assessed. Differential interference contrast microscopy and kymographic analysis of individual growth cycles revealed that vesicles can advance transiently to within 2 to 4 microm of the apex during the phase of maximally increasing Cl(-) efflux, which temporally overlaps the phase of cell elongation during the growth cycle. In summary, these investigations indicate that Cl(-) ion dynamics are an important component in the network of events that regulate pollen tube homeostasis and growth.[1]


WikiGenes - Universities