The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells.

The interaction between two phytohormones, gibberellins (GA) and abscisic acid (ABA), is an important factor regulating the developmental transition from seed dormancy to germination. In cereal aleurone tissue, GA induces and ABA suppresses the expression of alpha-amylases that are essential for the utilization of starch stored in the endosperm. In this work, the signaling pathways mediated by these hormones were investigated in the aleurone cells of barley seeds using double-stranded RNA interference (RNAi) technology. In this tissue, double-stranded RNA molecules generated from the transient expression of DNA templates caused a sequence-specific suppression of the target genes. We demonstrate that the transcription factor, GAMyb, is not only sufficient but also necessary for the GA induction of alpha-amylase. Another regulatory protein, SLN1, is shown to be a repressor of GA action, and the use of RNAi technology to inhibit the synthesis of SLN1 led to derepression of alpha-amylase even in the absence of GA. However, this effect still was suppressed by ABA. Although the ABA-induced Ser/Thr protein kinase, PKABA1, is known to suppress GA-induced alpha-amylase expression, PKABA1 RNAi did not hamper the inhibitory effect of ABA on the expression of alpha-amylase, indicating that a PKABA1-independent signaling pathway also may exist. We suggest that the generation of specific RNAi in a transient expression approach is a useful technique for elucidating the role of regulatory molecules in biological systems in which conventional mutational studies cannot be performed easily.[1]


WikiGenes - Universities