The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Two pore residues mediate acidosis-induced enhancement of C-type inactivation of the Kv1.4 K(+) channel.

Acidosis inhibits current through the Kv1.4 K(+) channel, perhaps as a result of enhancement of C-type inactivation. The mechanism of action of acidosis on C-type inactivation has been studied. A mutant Kv1.4 channel that lacks N-type inactivation (fKv1.4 Delta2-146) was expressed in Xenopus oocytes, and currents were recorded using two-microelectrode voltage clamp. Acidosis increased fKv1.4 Delta2-146 C-type inactivation. Replacement of a pore histidine with cysteine (H508C) abolished the increase. Application of positively charged thiol-specific methanethiosulfonate to fKv1.4 Delta2-146 H508C increased C-type inactivation, mimicking the effect of acidosis. Replacement of a pore lysine with cysteine (K532C) abolished the acidosis-induced increase of C-type inactivation. A model of the Kv1.4 pore, based on the crystal structure of KcsA, shows that H508 and K532 lie close together. It is suggested that the acidosis-induced increase of C-type inactivation involves the charge on H508 and K532.[1]

References

  1. Two pore residues mediate acidosis-induced enhancement of C-type inactivation of the Kv1.4 K(+) channel. Claydon, T.W., Boyett, M.R., Sivaprasadarao, A., Orchard, C.H. Am. J. Physiol., Cell Physiol. (2002) [Pubmed]
 
WikiGenes - Universities