The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mercury and lead tolerance in hypersaline sulfate-reducing bacteria.

Sulfate-reducing bacteria (SRB) HSR1, HSR4, and HSR14 isolated from the salt pans of Goa grew best at 90-100/1000 salinity on substrates like formate, acetate, lactate, butyrate, ethanol and benzoate. They were gram negative, non-sporulating, non-motile rods lacking in desulfoviridin and cytochromes. Examination of these isolates for heavy metal tolerance and response studies in terms of growth and sulfate-reducing activity (SRA) were carried out using HgCl2 and Pb(NO3)2 at final concentration of 50, 100, and 200 and 100, 200 and 500 microg ml(-1) respectively. With Hg, HSR1 showed approximately 80% of the control's growth at 100 and 200 microg ml(-1) but SRA reached only 60% of the control values at the end of 14 days. HSR14 could reach >100% of the control's growth at 200 microg ml(-1) but the SRA reached only up to 60% of the control without metal at 100 microg ml(-1). Though the concentration of Pb was double that of Hg, HSR4 could grow and respire better than the control, the growth being stimulated by 160% and respiration by 170% in the presence of 500 microg ml(-1) of Pb(NO3)2. It is probable that some hypersaline SRB are more tolerant to heavy metals than the mesohaline counterparts and could be more effectively used for precipitating these metals in bioremediatory measures. Further examination of their responses to varied concentration of metals under different salinities would indicate their range of applicability.[1]

References

  1. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria. Harithsa, S., Kerkar, S., Loka Bharathi, P.A. Mar. Pollut. Bull. (2002) [Pubmed]
 
WikiGenes - Universities