The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of Tbx3 expression by anteroposterior signalling in vertebrate limb development.

Tbx3, a T-box gene family member related to the Drosophila gene optomotor blind ( omb) and encoding a transcription factor, is expressed in anterior and posterior stripes in developing chick limb buds. Tbx3 haploinsufficiency has been linked with the human condition ulnar-mammary syndrome, in which predominantly posterior defects occur in the upper limb. Omb is expressed in Drosophila wing development in response to a signalling cascade involving Hedgehog and Dpp. Homologous vertebrate signals Sonic hedgehog (Shh) and bone morphogenetic protein 2 (Bmp2) are associated in chick limbs with signalling of the polarising region which controls anteroposterior pattern. Here we carried out tissue transplantations, grafted beads soaked in Shh, Bmps, and Noggin in chick limb buds, and analysed Tbx3 expression. We also investigated Tbx3 expression in limb buds of chicken and mouse mutants and retinoid-deficient quail in which anteroposterior patterning is abnormal. We show that Tbx3 expression in anterior and posterior stripes is regulated differently. Posterior Tbx3 expression is stable and depends on the signalling cascade centred on the polarising region involving Shh and Bmps, while anterior Tbx3 expression is labile and depends on the balance between positive Bmp signals, produced anteriorly, and negative Shh signals, produced posteriorly. Our results are consistent with the idea that posterior Tbx3 expression is involved in specifying digit pattern and thus provides an explanation for the posterior defects in human patients. Anterior Tbx3 expression appears to be related to the width of limb bud, which determines digit number.[1]


  1. Regulation of Tbx3 expression by anteroposterior signalling in vertebrate limb development. Tümpel, S., Sanz-Ezquerro, J.J., Isaac, A., Eblaghie, M.C., Dobson, J., Tickle, C. Dev. Biol. (2002) [Pubmed]
WikiGenes - Universities