The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Synthesis of classical and nonclassical, partially restricted, linear, tricyclic 5-deaza antifolates.

Seven novel 2,4-diamino-5-deaza-6,7,8,9-tetrahydropyrido[3,4-g]pteridine derivatives 3-9 with different benzyl and a benzoyl substitution at the N7 position were designed and synthesized, as classical and nonclassical, partially restricted, linear tricyclic 5-deaza antifolates. The purpose was to investigate the effect of conformational restriction of the C6- C9 (tau(1)) and C9- N10 (tau(2)) bonds via an ethyl bridge from the N10 to the C7 position of 5-deaza methotrexate (MTX) on the inhibitory potency against dihydrofolate reductase (DHFR) from different sources and on antitumor activity. The synthetic methodology for most of the target compounds was a concise five-step total synthesis to construct the tricyclic nucleus, 2,4-diamino-5-deaza-7H-6,7,8,9-tetrahydropyrido[3,4-g]pteridine (23), followed by regioselective alkylation of the N7 nitrogen. Biological results indicated that this partial conformational modification for the classical analogue N-[4-[(2,4-diamino-5-deaza-6,7,8,9-tetrahydropyrido[3,4-g]pteridin-7-yl)methyl]benzoyl]-L-glutamic acid 3 was detrimental to DHFR inhibitory activity as well as to antitumor activity compared to MTX or 5-deaza MTX. However, the classical analogue 3 was a better substrate for folypolyglutamate synthetase (FPGS) than MTX. These results show that a classical 5-deaza folate partially restricted via a bridge between the N10 and C7 positions retains FPGS substrate activity and that the antitumor activity of classical tricyclic analogues such as 3 would be influenced by FPGS levels in tumor systems. Interestingly, the nonclassical analogues 4-9 showed moderate to good selectivity against DHFR from pathogenic microbes compared to recombinant human DHFR. These results support the idea that removal of the 5-methyl group of piritrexim along with restriction of tau(1) and tau(2) can translate into selectivity for DHFR from pathogens.[1]


  1. Synthesis of classical and nonclassical, partially restricted, linear, tricyclic 5-deaza antifolates. Gangjee, A., Zeng, Y., McGuire, J.J., Kisliuk, R.L. J. Med. Chem. (2002) [Pubmed]
WikiGenes - Universities