The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Human CD34+ hematopoietic progenitor cells hyperacetylate core histones in response to sodium butyrate, but not trichostatin A.

Cells positive for the cell surface marker CD34 from bone marrow or umbilical cord blood form a subset of quiescent, hematopoetic precursors that can establish human hematopoesis in immunodeficient mice and can progress down various differentiation pathways in vitro. They provide a valuable model system in which progression from quiescent to cycling to differentiated states can be linked to changes in chromatin and histone modification. We have used the deacetylase inhibitor sodium butyrate to show that turnover of histone H4 acetates is rapid and comparable in quiescent and cycling CD34+ cells from human umbilical cord blood (CD34+ UBC). Surprisingly, the widely used inhibitor trichostatin A (TSA) had little (cycling cells) or no (quiescent cells) effect on H4 acetylation in CD34+ UBC. Among five cell types examined, CD34+ UBC were unique in expressing all (putative) deacetylases tested (HDAC1, -2, -3, -4, -6, -7, and -8 and SIRT1-4), but no single deacetylase correlated with their TSA resistance. Also, HDAC1, -2, -3, and -6 complexes isolated from CD34+ UBC by immunoprecipitation were all inhibited by TSA in vitro. Thus, TSA resistance of CD34+ UBC is not due to acquired or intrinsic TSA resistance of their deacetylases and may reflect an enhanced ability to process the drug.[1]


WikiGenes - Universities