The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In vivo administration of interferon gamma does not cause marrow aplasia in mice with a targeted disruption of FANCC.

OBJECTIVE: Hematopoietic cells from patients with Fanconi anemia (FA) and mice carrying a targeted disruption of the gene encoding complementation group C protein (FANCC(-/-)) demonstrate an apoptotic phenotype in response to alkylating agents and cytokines including interferon gamma ( IFN-gamma) in vitro. The aim of this study was to explore these apoptosis-inducing effects of IFN-gamma on the bone marrow of FANCC(-/-) mice as a potential strategy to select gene-corrected cells in vivo. Following pharmacokinetic studies to determine if serum concentrations effective in vitro can be achieved in vivo, we injected FANCC(-/-) mice with recombinant murine IFN-gamma. Hematopoietic effects were investigated by serial determinations of blood counts, progenitor colony formation, and marrow cellularity. RESULTS: Serial weekly intraperitoneal administrations of escalating doses of rmIFN-gamma did not affect peripheral blood counts in FANCC(-/-) mice, even after subsequent antibody-mediated fas ligation. Additionally, prolonged exposure after sequential daily administration of recombinant IFN-gamma did not impair progenitor cell clonogenicity in vitro. Pharmacokinetic data confirmed that the failure of IFN-gamma to induce marrow aplasia occurred in spite of peak serum levels greater than 100-fold in excess of those effective in vitro. CONCLUSION: We conclude that in spite of the well-documented in vitro apoptotic tendency of FA-phenotype hematopoietic cells, the in vivo administration of IFN-gamma with and without subsequent fas ligation does not induce bone marrow failure in FANCC(-/-) (129SvJ strain) mice. Additional selective pressure may be necessary to achieve targeted ablation of uncorrected, FA-phenotype, marrow cells.[1]


WikiGenes - Universities