The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential sensitivities of pyrogenic chemokine fevers to cyclooxygenase isozymes antibodies.

It has been proposed that prostaglandin (PG)E(2) production via a process catalyzed by the inducible isoform of cyclooxygenase (COX)-2 and activation of specific PGE(2) receptor subtypes within the preoptic/anterior hypothalamus (AH/POA) is the last step and unique pathway in the induction of a fever. However, many data support the existence of a PG-independent pathway. That is, other more rapid mechanisms, which involve the constitutive COX-1 isozyme, may be more critical for a PG-dependent fever. Thus, we examined the role of both COX isoforms in the AH/POA in fevers induced by macrophage inflammatory protein (MIP)-1beta, a PG-independent pyrogen, and RANTES (regulated on activation, normal T-cells expressed and secreted), a PG-dependent pyrogen. In freely moving rats, two independent polyclonal antibodies were used which neutralize COX-1 and COX-2. The microinjection of either MIP-1beta or RANTES into the pyrogen-sensitive region of the AH/POA induced an intense fever of rapid onset. Peripheral pretreatment with an antipyretic dose of dexamethasone which prevents COX-2 expression, or the microinjections into the AH/POA of either anti-COX-1 or anti-COX-2, blocked the febrile response induced by RANTES but not that induced by MIP-1beta. These results provide strong evidence for the existence of rapid mechanisms in the AH/POA which involve both COX isozymes during the fever induced by RANTES, and further support the existence of an alternative PG-independent pathway in the febrile response.[1]

References

 
WikiGenes - Universities