The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells.

Membrane-associated guanylate kinase homologues (MAGUKs) are generally found under the plasma membrane of cell-cell contact sites and function as scaffolding proteins by linking cytoskeletal and signaling molecules to transmembrane receptors. The correct targeting of MAGUKs is essential for their receptor-clustering function; however, the molecular mechanism of their intracellular transport is unknown. Here, we show that the guanylate kinase-like domain of human discs large protein binds directly within the amino acids 607-831 of the stalk domain of GAKIN, a kinesin-like protein of broad distribution. The primary structure of the binding segment, termed MAGUK binding stalk domain, is conserved in Drosophila kinesin-73 and some other motor and non-motor proteins. This stalk segment is not found in GKAP, a synaptic protein that interacts with the guanylate kinase-like domain, and unlike GKAP, the binding of GAKIN is not regulated by the intramolecular interactions within the discs large protein. The recombinant motor domain of GAKIN is an active microtubule- stimulated ATPase with k(cat) = 45 s(-1), K(0.5 (MT)) = 0.1 microm. Overexpression of green fluorescent protein-fused GAKIN in Madin-Darby canine kidney epithelial cells induced long projections with both GAKIN and endogenous discs large accumulating at the tip of these projections. Importantly, the accumulation of endogenous discs large was eliminated when a mutant GAKIN lacking its motor domain was overexpressed under similar conditions. Taken together, our results indicate that discs large is a cargo molecule of GAKIN and suggest a mechanism for intracellular trafficking of MAGUK-laden vesicles to specialized membrane sites in mammalian cells.[1]

References

 
WikiGenes - Universities