Exploiting virus stealth technology for xenotransplantation: reduced human T cell responses to porcine cells expressing herpes simplex virus ICP47.
Direct recognition of porcine major histocompatibility complex (MHC) proteins by human T cells is well documented. Eliminating donor (porcine) MHC proteins may therefore be beneficial in pig-to-human xenotransplants. To this end, we have attempted to exploit viral stealth mechanisms to eliminate pig MHC class I cell-surface expression. PK(15) (pig kidney) cells stably transfected with the herpes simplex virus (HSV) ICP47 gene [PK(15)-ICP47 cells] exhibited a dramatic reduction of MHC class I cell-surface expression when compared with untransfected PK(15) cells. To test the effect of down-regulation of porcine MHC class I on human cellular immune responses, a human CD8+ enriched T cell line (anti-PK15 T cells) with reactivity towards PK(15) cells was derived by repeated stimulation of human T cells with PK(15) cells stably transfected with the costimulatory molecule B7.1 [PK(15)-B7.1 cells]. Anti-PK15 T cells efficiently lyzed PK(15) cells but not PK(15)-ICP47 (class I negative) cells. Consistent with effector function, anti-PK15 T cells showed a robust proliferative response to PK(15)-B7.1 cells but did not proliferate at all to PK(15)-B7.1 cells which also expressed HSV ICP47. These results suggest that virus stealth technology can be exploited for xenotransplantation.[1]References
- Exploiting virus stealth technology for xenotransplantation: reduced human T cell responses to porcine cells expressing herpes simplex virus ICP47. Crew, M.D., Phanavanh, B. Xenotransplantation (2003) [Pubmed]
 
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









