The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine.

Social isolation (SI) of male mice lasting >4 weeks is associated with aggression toward intruders and a down-regulation of brain allopregnanolone (Allo) content. SI of female mice fails to down-regulate brain Allo content or to induce aggressiveness. Fluoxetine (Prozac in clinical use) is an S- and R-fluoxetine (FLX) mixture, which in mammals is metabolized into S- and R-norfluoxetine (NFLX). The S isomers of FLX and NFLX are more active than their respective R isomers in normalizing brain Allo down-regulation and in reducing the aggressiveness induced by SI. Thus, FLX stereospecifically reduces brain Allo down-regulation and the aggressiveness induced by SI, whereas serotonin (5-HT) uptake inhibition lacks stereospecificity. The doses of S-FLX and S-NFLX that reduce aggressiveness and Allo brain content down-regulation induced by SI are at least one order of magnitude lower than the doses that block 5-HT reuptake. Doses of imipramine that inhibit 5-HT uptake neither reduce aggressiveness nor normalize brain Allo down-regulation. We conclude that Allo brain content normalization is a better candidate than 5-HT reuptake inhibition to explain the reduction of aggressiveness elicited by S-FLX and S-NFLX.[1]

References

  1. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Pinna, G., Dong, E., Matsumoto, K., Costa, E., Guidotti, A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
 
WikiGenes - Universities