The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

14-3-3 isoforms and pattern formation during barley microspore embryogenesis.

The members of the 14-3-3 isoform family have been shown to be developmentally regulated during animal embryogenesis, where they take part in cell differentiation processes. 14-3-3 isoform-specific expression patterns were studied in plant embryogenic processes, using barley (Hordeum vulgare L.) microspore embryogenesis as a model system. After embryogenesis induction by stress, microspores with enlarged morphology showed higher viability than non-enlarged ones. Following microspore culture, cell division was only observed among the enlarged microspores. Western blot and immunolocalization of three barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C were carried out using isoform-specific antibodies. The level of 14-3-3C protein was higher in enlarged microspores than in non-enlarged ones. A processed form of 14-3-3A was associated with the death pathway of the non-enlarged microspores. In the early embryogenesis stage, 14-3-3 subcellular localization differed among dividing and non-dividing microspores and the microspore-derived multicellular structures showed a polarized expression pattern of 14-3-3C and a higher 14-3-3A signal in epidermis primordia. In the late embryogenesis stage, 14-3-3C was specifically expressed underneath the L(1) layer of the shoot apical meristem and in the scutellum of embryo-like structures (ELSs). 14-3-3C was also expressed in the scutellum and underneath the L(1) layer of the shoot apical meristem of 21 d after pollination (DAP) zygotic embryos. These results reveal that 14-3-3A processing and 14-3-3C isoform tissue-specific expression are closely related to cell fate and initiation of specific cell type differentiation, providing a new insight into the study of 14-3-3 proteins in plant embryogenesis.[1]

References

  1. 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. Maraschin, S.d.e. .F., Lamers, G.E., de Pater, B.S., Spaink, H.P., Wang, M. J. Exp. Bot. (2003) [Pubmed]
 
WikiGenes - Universities