The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Meristem


High impact information on Meristem

  • Floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) promote establishment and maintenance of floral identity in newly formed floral primordia [4].
  • Without such repression, continued AGL24 expression in floral meristems is sufficient to cause floral reversion regardless of the activation of floral organ identity genes [4].
  • We propose a role for AtPIN4 in generating a sink for auxin below the quiescent center of the root meristem that is essential for auxin distribution and patterning [5].
  • FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems [6].
  • We also show that AG represses WUS at later stages of floral development, thus creating a negative feedback loop that is required for the determinate growth of floral meristems [7].

Chemical compound and disease context of Meristem


Biological context of Meristem


Anatomical context of Meristem


Associations of Meristem with chemical compounds

  • The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize [18].
  • We next treated the meristems with two inhibitors of DNA synthesis, aphidicolin and hydroxyurea [19].
  • We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato [20].
  • A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem [21].
  • Three markers were identified that are expressed, respectively, in the embryonic and seedling root tip (POLARIS), cotyledons and shoot and root apices (EXORDIUM), and root cap (COLUMELLA) [22].

Gene context of Meristem

  • CLV3 acts nonautonomously in meristems and is expressed at the meristem surface overlying the CLV1 domain [23].
  • However, unlike CEN, TFL1 is also expressed during the vegetative phase, where it delays the commitment to inflorescence development and thus affects the timing of the formation of the inflorescence meristem as well as its identity [24].
  • Here, ABI1 was shown to regulate stomatal aperture in leaves and mitotic activity in root meristems [25].
  • Together with the expression pattern of the DET3 gene revealed by GFP fluorescence, our data provide in vivo evidence for a role for the V-ATPase in the control of cell elongation and in the regulation of meristem activity [26].
  • The physical association of the PNY and BP proteins suggests that they participate in a complex that regulates early patterning events in the inflorescence meristem [27].

Analytical, diagnostic and therapeutic context of Meristem

  • In situ hybridization studies have demonstrated that EMF2 RNA is found in developing embryos, in both the vegetative and the reproductive shoot meristems, and in lateral organ primordia [28].
  • Microarray analysis identified four mRNA species with altered expression in two alleles of amp1, including upregulation of CYP78A5, which has been shown to mark the shoot apical meristem boundary [29].
  • Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase [30].
  • The acidic protein bovine serum albumin and soluble maize root tip protein have no noticeable effect on the titration curves, whereas the basic protein protamine exerts a profound effect [31].
  • Promoter-reporter and RT-PCR analysis confirms expression of the KNAT6 gene in roots, and in particular in the phloem tissue close to the site of lateral root initiation, though not in the primary or lateral root meristem [32].


  1. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Dekkers, L.C., van der Bij, A.J., Mulders, I.H., Phoelich, C.C., Wentwoord, R.A., Glandorf, D.C., Wijffelman, C.A., Lugtenberg, B.J. Mol. Plant Microbe Interact. (1998) [Pubmed]
  2. Hypoxia does not affect rate of ATP synthesis and energy metabolism in rice shoot tips as measured by 31P NMR in vivo. Fan, T.W., Lane, A.N., Higashi, R.M. Arch. Biochem. Biophys. (1992) [Pubmed]
  3. A comparative study of the potentiating effect of caffeine and poly-D-lysine on chromosome damage induced by X-rays in plant cells. Mateos, S., Panneerselvam, N., Mateos, J.C., Cortés, F. Mutat. Res. (1992) [Pubmed]
  4. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Yu, H., Ito, T., Wellmer, F., Meyerowitz, E.M. Nat. Genet. (2004) [Pubmed]
  5. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., Palme, K. Cell (2002) [Pubmed]
  6. FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B., Araki, T. Cell (2001) [Pubmed]
  7. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., Weigel, D. Cell (2001) [Pubmed]
  8. The genotoxic effects of Logran on Hordeum vulgare L. and Triticum aestivum L. Kaymak, F., Gökalp Muranli, F.D. Acta. Biol. Hung. (2006) [Pubmed]
  9. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T., Benfey, P.N. Cell (2000) [Pubmed]
  10. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Sablowski, R.W., Meyerowitz, E.M. Cell (1998) [Pubmed]
  11. Two-component circuitry in Arabidopsis cytokinin signal transduction. Hwang, I., Sheen, J. Nature (2001) [Pubmed]
  12. CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Trotochaud, A.E., Jeong, S., Clark, S.E. Science (2000) [Pubmed]
  13. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jürgens, G., Laux, T. Cell (2000) [Pubmed]
  14. A pair of related genes with antagonistic roles in mediating flowering signals. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., Araki, T. Science (1999) [Pubmed]
  15. Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. Komis, G., Apostolakos, P., Galatis, B. Plant Cell Physiol. (2002) [Pubmed]
  16. Dictyosome polarity and membrane differentiation in outer cap cells of the maize root tip. Morré, D.J., Mollenhauer, H.H. Eur. J. Cell Biol. (1983) [Pubmed]
  17. Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). Belmonte, M.F., Donald, G., Reid, D.M., Yeung, E.C., Stasolla, C. J. Exp. Bot. (2005) [Pubmed]
  18. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Taguchi-Shiobara, F., Yuan, Z., Hake, S., Jackson, D. Genes Dev. (2001) [Pubmed]
  19. In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Grandjean, O., Vernoux, T., Laufs, P., Belcram, K., Mizukami, Y., Traas, J. Plant Cell (2004) [Pubmed]
  20. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Reinhardt, D., Wittwer, F., Mandel, T., Kuhlemeier, C. Plant Cell (1998) [Pubmed]
  21. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Li, J., Zhu, S., Song, X., Shen, Y., Chen, H., Yu, J., Yi, K., Liu, Y., Karplus, V.J., Wu, P., Deng, X.W. Plant Cell (2006) [Pubmed]
  22. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Topping, J.F., Lindsey, K. Plant Cell (1997) [Pubmed]
  23. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Fletcher, J.C., Brand, U., Running, M.P., Simon, R., Meyerowitz, E.M. Science (1999) [Pubmed]
  24. Inflorescence commitment and architecture in Arabidopsis. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., Coen, E. Science (1997) [Pubmed]
  25. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F., Giraudat, J. Science (1994) [Pubmed]
  26. The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Schumacher, K., Vafeados, D., McCarthy, M., Sze, H., Wilkins, T., Chory, J. Genes Dev. (1999) [Pubmed]
  27. The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Smith, H.M., Hake, S. Plant Cell (2003) [Pubmed]
  28. EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R., Takahashi, S. Plant Cell (2001) [Pubmed]
  29. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Helliwell, C.A., Chin-Atkins, A.N., Wilson, I.W., Chapple, R., Dennis, E.S., Chaudhury, A. Plant Cell (2001) [Pubmed]
  30. Cells of pea (Pisum sativum) that differentiate from G2 phase have extrachromosomal DNA. Van't Hof, J., Bjerknes, C.A. Mol. Cell. Biol. (1982) [Pubmed]
  31. Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Roberts, J.K., Wade-Jardetzky, N., Jardetzky, O. Biochemistry (1981) [Pubmed]
  32. KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Dean, G., Casson, S., Lindsey, K. Plant Mol. Biol. (2004) [Pubmed]
WikiGenes - Universities