The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hordeum


High impact information on Hordeum


Chemical compound and disease context of Hordeum

  • The ability of bacteria to cause rapid uptake of choline sulfate in plants, i.e., effectiveness, was studied using Pseudomonas tolaasii and excised roots of barley (Hordeum vulgare L.). Once effective, bacteria remained so after being killed by treatments which cause little damage to their outer structure [11].

Biological context of Hordeum


Anatomical context of Hordeum


Associations of Hordeum with chemical compounds

  • Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. salome) [22].
  • Both V814K1 and V814K2 encompass only 1 cysteine residue at position 634 which is conserved between the V-PPases from Arabidopsis thaliana, Beta vulgaris (isoforms 1 and 2), and Hordeum vulgare [23].
  • Barley (Hordeum vulgare, cv. Bomi) leaf ADP-glucose pyrophosphorylase (AGP) was purified to near-homogeneity, using ammonium sulfate fractionation and heat treatment as well as ion exchange, hydrophobic, and dye-ligand chromatography [24].
  • Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves [24].
  • Carboxypeptidase I from germinated barley (Hordeum vulgare) grain consists of two peptide chains linked by disulfides; the A- and B-chains contain 266 and 148 amino acid residues, respectively (Sorensen, S. B., Breddam, K., and Svendsen, I. (1986) Carlsberg Res. Commun. 51, 475-485) [25].

Gene context of Hordeum

  • We have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter [26].
  • 1. Calmodulin-like proteins were purified from the fruiting bodies of higher (basidiomycete) fungi and barley (Hordeum sp.) shoots [27].
  • The hAMPK gene bears homology to a yeast protein kinase-encoding gene (snf1) that regulates carbohydrate metabolism, and also with three other genes encoding SNF1-like kinases from different plant species, namely Arabidopsis thaliana, Hordeum vulgare and Secale cereale [28].
  • Localization studies indicate that barley (Hordeum vulgare) sucrose transporter HvSUT1 functions in sucrose uptake into seeds during grain filling [29].
  • Previously we reported that oxalate oxidase activity increases in extracts of barley (Hordeum vulgare) leaves in response to the powdery mildew fungus (Blumeria [syn. Erysiphe] graminis f.sp. hordei) and proposed this as a source of H2O2 during plant-pathogen interactions [30].

Analytical, diagnostic and therapeutic context of Hordeum


  1. Identification of the product of ndhA gene as a thylakoid protein synthesized in response to photooxidative treatment. Martín, M., Casano, L.M., Sabater, B. Plant Cell Physiol. (1996) [Pubmed]
  2. Antagonistic effect of calcium, zinc and selenium against cadmium induced chromosomal aberrations and micronuclei in root cells of Hordeum vulgare. Zhang, Y., Xiao, H. Mutat. Res. (1998) [Pubmed]
  3. Genotoxicity of azidoalanine in mammalian cells. Arenaz, P., Hallberg, L. Environ. Mol. Mutagen. (1989) [Pubmed]
  4. Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Robidoux, P.Y., Bardai, G., Paquet, L., Ampleman, G., Thiboutot, S., Hawari, J., Sunahara, G.I. Arch. Environ. Contam. Toxicol. (2003) [Pubmed]
  5. Expression of a higher-plant chloroplast psbD promoter in a cyanobacterium (Synechococcus sp. strain PCC7942) reveals a conserved cis-element, designated PGT, that differentially interacts with sequence-specific binding factors during leaf development. Christopher, D.A., Shen, Y., Dudley, P., Tsinoremas, N.F. Curr. Genet. (1999) [Pubmed]
  6. A methyl jasmonate-induced shift in the length of the 5' untranslated region impairs translation of the plastid rbcL transcript in barley. Reinbothe, S., Reinbothe, C., Heintzen, C., Seidenbecher, C., Parthier, B. EMBO J. (1993) [Pubmed]
  7. Localization of Ca++-containing antimonate precipitates during mitosis. Wick, S.M., Hepler, P.K. J. Cell Biol. (1980) [Pubmed]
  8. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Delhaize, E., Ryan, P.R., Hebb, D.M., Yamamoto, Y., Sasaki, T., Matsumoto, H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Schuurink, R.C., Shartzer, S.F., Fath, A., Jones, R.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  10. A new class of N-hydroxycinnamoyltransferases. Purification, cloning, and expression of a barley agmatine coumaroyltransferase (EC Burhenne, K., Kristensen, B.K., Rasmussen, S.K. J. Biol. Chem. (2003) [Pubmed]
  11. Bacteria-mediated uptake of choline sulfate by plants: bacterial effectiveness. Bakkerud, K.G., Nissen, P. Biochim. Biophys. Acta (1980) [Pubmed]
  12. Structure and blue-light-responsive transcription of a chloroplast psbD promoter from Arabidopsis thaliana. Hoffer, P.H., Christopher, D.A. Plant Physiol. (1997) [Pubmed]
  13. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Aslam, M., Travis, R.L., Huffaker, R.C. Plant Physiol. (1992) [Pubmed]
  14. Localization and pattern of graviresponse across the pulvinus of barley Hordeum vulgare. Brock, T.G., Lu, C.R., Ghosheh, N.S., Kaufman, P.B. Plant Physiol. (1989) [Pubmed]
  15. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Castleden, C.K., Aoki, N., Gillespie, V.J., MacRae, E.A., Quick, W.P., Buchner, P., Foyer, C.H., Furbank, R.T., Lunn, J.E. Plant Physiol. (2004) [Pubmed]
  16. A single limit dextrinase gene is expressed both in the developing endosperm and in germinated grains of barley. Burton, R.A., Zhang, X.Q., Hrmova, M., Fincher, G.B. Plant Physiol. (1999) [Pubmed]
  17. Characterization of the association of nitrate reductase with barley (Hordeum vulgare L.) root membranes. Meyerhoff, P.A., Fox, T.C., Travis, R.L., Huffaker, R.C. Plant Physiol. (1994) [Pubmed]
  18. Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Grenier, J., Potvin, C., Asselin, A. Plant Physiol. (1993) [Pubmed]
  19. Redox-sensitive target detection in gibberellic acid-induced barley aleurone layer. Maya-Ampudia, V., Bernal-Lugo, I. Free Radic. Biol. Med. (2006) [Pubmed]
  20. Expression of resistance to barley stripe mosaic virus in barley and oat protoplasts. Zheng, Y.Z., Edwards, M.C. J. Gen. Virol. (1990) [Pubmed]
  21. Subcellular distribution of calcium within root meristem cells. Iordan, M., Craciun, C., Soran, V. Acta Histochem. (1977) [Pubmed]
  22. Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. salome). Reinbothe, S., Reinbothe, C., Parthier, B. J. Biol. Chem. (1993) [Pubmed]
  23. Localization of cytosolically oriented maleimide-reactive domain of vacuolar H(+)-pyrophosphatase. Zhen, R.G., Kim, E.J., Rea, P.A. J. Biol. Chem. (1994) [Pubmed]
  24. Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. Kleczkowski, L.A., Villand, P., Preiss, J., Olsen, O.A. J. Biol. Chem. (1993) [Pubmed]
  25. The A- and B-chains of carboxypeptidase I from germinated barley originate from a single precursor polypeptide. Doan, N.P., Fincher, G.B. J. Biol. Chem. (1988) [Pubmed]
  26. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Gocal, G.F., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., MacMillan, C.P., Li, S.F., Parish, R.W., Dennis, E.S., Weigel, D., King, R.W. Plant Physiol. (2001) [Pubmed]
  27. The preparation of calmodulins from barley (Hordeum sp.) and basidiomycete fungi. Grand, R.J., Nairn, A.C., Perry, S.V. Biochem. J. (1980) [Pubmed]
  28. Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals. Aguan, K., Scott, J., See, C.G., Sarkar, N.H. Gene (1994) [Pubmed]
  29. Analysis of the transport activity of barley sucrose transporter HvSUT1. Sivitz, A.B., Reinders, A., Ward, J.M. Plant Cell Physiol. (2005) [Pubmed]
  30. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Zhou, F., Zhang, Z., Gregersen, P.L., Mikkelsen, J.D., de Neergaard, E., Collinge, D.B., Thordal-Christensen, H. Plant Physiol. (1998) [Pubmed]
  31. Polypeptide changes induced by salt stress, water deficit, and osmotic stress in barley roots: a comparison using two-dimensional gel electrophoresis. Hurkman, W.J., Tanaka, C.K. Electrophoresis (1988) [Pubmed]
  32. Molecular cloning and expression of the large subunit of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. Eimert, K., Luo, C., Déjardin, A., Villand, P., Thorbjørnsen, T., Kleczkowski, L.A. Gene (1997) [Pubmed]
  33. Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots. Lehmann, H., Stelzer, R., Holzamer, S., Kunz, U., Gierth, M. Planta (2000) [Pubmed]
  34. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. Darwent, M.J., Paterson, E., McDonald, A.J., Tomos, A.D. J. Exp. Bot. (2003) [Pubmed]
  35. Effects of aluminum chloride on the nucleus and nucleolus in root tip cells of Hordeum vulgare. Zhang, Y. Mutat. Res. (1995) [Pubmed]
WikiGenes - Universities