The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis.

BACKGROUND: The mechanisms responsible for disturbed iron homoeostasis in hereditary haemochromatosis are poorly understood. However, results of some studies indicate a link between hepcidin, a liver-derived peptide, and intestinal iron absorption, suggesting that this molecule could play a part in hepatic iron overload. To investigate this possible association, we studied the hepatic expression of the gene for hepcidin (HAMP) and a gene important in iron transport ( IREG1) in patients with haemochromatosis, in normal controls, and in Hfe-knockout mice. METHODS: We extracted total RNA from the liver tissue of 27 patients with HFE-associated haemochromatosis, seven transplant donors (controls), and Hfe-knockout mice. HAMP and IREG1 mRNA concentrations were examined by ribonuclease protection assays and expressed relative to the housekeeping gene GAPD. FINDINGS: There was a significant decrease in HAMP expression in untreated patients compared with controls (5.4-fold, 95% CI 3.3-7.5; p<0.0001) despite significantly increased iron loading. Similarly, we noted a decrease in Hamp expression in iron-loaded Hfe-knockout mice. Hepatic IREG1 expression was greatly upregulated in patients with haemochromatosis (1.8-fold, 95% CI 1.5-2.2; p=0.002). There was a significant correlation between hepatic iron concentration and expression of HAMP (r=0.59, p=0.02) and IREG1 (r=0.67, p=0.007) in untreated patients. INTERPRETATION: Lack of HAMP upregulation in HFE-associated haemochromatosis despite significant hepatic iron loading indicates that HFE plays an important part in the regulation of hepcidin expression in response to iron overload. Our results imply that the liver is important in the pathophysiology of HFE-associated haemochromatosis. Furthermore, the increase in hepatic IREG1 expression in haemochromatosis suggests that IREG1 could function to facilitate the removal of excess iron from the liver.[1]

References

  1. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Bridle, K.R., Frazer, D.M., Wilkins, S.J., Dixon, J.L., Purdie, D.M., Crawford, D.H., Subramaniam, V.N., Powell, L.W., Anderson, G.J., Ramm, G.A. Lancet (2003) [Pubmed]
 
WikiGenes - Universities