Mutations of TP53 induce loss of DNA methylation and amplification of the TROP1 gene.
p53 and DNA methylation play key roles in the maintenance of genome stability. In this work, we demonstrate that the two mechanisms are linked and that p53 plays a role in the maintenance of the DNA methylation levels. The loss of p53 was shown to induce loss of DNA methylation in the TROP1 gene, a human cancer-expressed locus that undergoes amplification when hypomethylated. This demethylation was reverted by the reintroduction of a wild-type TP53 (wtTP53) in the TP53-null cells. Using a gene-amplification assay in vivo, we demonstrate that the loss of p53 leads to a demethylation-dependent TROP1 gene amplification. The induction of gene amplification was reverted by the expression of a wtTP53 gene or by in vitro methylation of the transfected DNA with the Sss I DNA methylase. Taken together, these findings demonstrate that the inactivation of TP53 induces loss of DNA methylation and DNA methylation-dependent gene amplification.[1]References
- Mutations of TP53 induce loss of DNA methylation and amplification of the TROP1 gene. Nasr, A.F., Nutini, M., Palombo, B., Guerra, E., Alberti, S. Oncogene (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg