The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mathematical modeling of in vitro enzymatic production of 2-Keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors.

A 2-Keto-L-gulonic acid (2-KLG) production process using stationary Pantoea citrea cells and a Corynebacterium 2,5-diketo-D-gluconic acid (2,5-DKG) reductase enzyme has been developed which may represent an improved method of vitamin C biosynthesis. Experimental data was collected using the F22Y/A272G 2,5-DKG reductase mutant and NADP(H) as a cofactor. An extensive kinetic analysis was performed and a kinetic rate equation model for this process was developed. A recent protein engineering effort has resulted in several 2,5-DKG reductase mutants exhibiting improved activity with NADH as a cofactor. The use of NAD(H) in the bioreactor may be preferable due to its increased stability and lower cost. The kinetic parameters in the rate equation model have been replaced in order to predict 2-KLG production with NAD(H) as a cofactor. The model was also extended to predict 2-KLG production in the presence of a range of combined cofactor concentrations. This analysis suggests that the use of the F22Y/K232G/R238H/A272G 2,5-DKG reductase mutant with NAD(H) combined with a small amount of NADP(H) could provide a significant cost benefit for in vitro enzymatic 2-KLG production.[1]


WikiGenes - Universities