The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Pivotal role of electrophilicity in glutathione S-transferase induction by tert-butylhydroquinone.

Although the induction of glutathione S-transferase (GST) activity by tert-butylhydroquinone (tBHQ) has been well-documented in several cell culture systems and rodent experiments, the exact mechanism responsible for its inducibility is still not thoroughly understood. To more precisely define the molecular mechanism of GST induction by tBHQ, we examined the one-electron oxidation and glutathione (GSH) reaction potentials of tBHQ as compared to its analogue, 2,5-di-tert-butylhydroquinone (DtBHQ). tBHQ and DtBHQ showed similar one-electron oxidation potentials, including free radical quenching (antioxidant), oxidative conversion of both compounds to a benzoquinone form, and Cu(2+)-dependent superoxide generation. On the other hand, the reduced GSH level was observed by the addition of tBHQ, but not DtBHQ, suggesting that tBHQ acts as an electrophile while DtBHQ does not. The data were consistent with the observation that tBHQ more potently induced the GSTP1 gene expression in RL34 cells than DtBHQ did. Moreover, we indeed detected the GSH-tBHQ conjugates in the cells exposed to tBHQ using an electrochemical detector-high-performance liquid chromatography technique. Thus, we conclude that an electrophilic quinone oxidation product that reacts with intracellular nucleophiles including protein thiol or GSH plays a major role in the GSTP1 gene expression.[1]


  1. Pivotal role of electrophilicity in glutathione S-transferase induction by tert-butylhydroquinone. Nakamura, Y., Kumagai, T., Yoshida, C., Naito, Y., Miyamoto, M., Ohigashi, H., Osawa, T., Uchida, K. Biochemistry (2003) [Pubmed]
WikiGenes - Universities