The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification of cytoplasmic domains of hVPAC1 receptor required for activation of adenylyl cyclase. Crucial role of two charged amino acids strictly conserved in class II G protein-coupled receptors.

The VPAC1 receptor mediates the action of two neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide. It is a class II G protein-coupled receptor-activating adenylyl cyclase (AC). The role of the N-terminal extracellular domain of hVPAC1 receptor for VIP binding is now established (Laburthe, M., Couvineau, A. and Marie, J. C. (2002) Recept. Channels 8, 137-153), but nothing is known regarding the cytoplasmic domains responsible for AC activation. Here, we constructed a large series of mutants by substituting amino acids with alanine in the intracellular loops (IL) 1, 2, and 3 and proximal C-terminal tail of the receptor. The mutation of 40 amino acids followed by expression of mutants in chinese hamster ovary cells showed the following. (i) Mutations IL1 result in the absence of expression of mutants, suggesting a role of this loop in receptor folding. (ii) All residues of IL2 can be mutated without alteration of receptor expression and AC response to VIP. (iii) Mutation of residues IL3 points to the specific role of lysine 322 in the efficacy of the stimulation of AC activity by VIP. This efficacy is reduced by 50% in the K322A mutant. (iv) The proximal C-terminal tail is equipped with another important amino acid since mutation of glutamic acid 394 reduces AC response by 50%. The double mutant K322A/E394A exhibits a drastic reduction of >85% in the efficacy of VIP in stimulating AC activity in membranes and cAMP response in intact cells without alteration of receptor expression or affinity for VIP. These data highlight the role of charged residues in IL3 and the proximal C-terminal tail of hVPAC1 receptor for agonist-induced AC activation. Because these charged residues are absolutely conserved in class II receptors for peptides, which are all mediating AC activation, they may play a general role in coupling of class II receptors with the Gs protein.[1]


WikiGenes - Universities