The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genetically modified NT2N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury.

Human Ntera-2 ( NT2) cells can be differentiated in vitro into well-characterized populations of NT2N neurons that engraft and mature when transplanted into the adult CNS of rodents and humans. They have shown promise as treatments for neurologic disease, trauma, and ischemic stroke. Although these features suggest that NT2N neurons would be an excellent platform for ex vivo gene therapy in the CNS, stable gene expression has been surprisingly difficult to achieve in these cells. In this report we demonstrate stable, efficient, and nontoxic gene transfer into undifferentiated NT2 cells using a pseudotyped lentiviral vector encoding the human elongation factor 1-alpha promoter and the reporter gene eGFP. Expression of eGFP was maintained when the NT2 cells were differentiated into NT2N neurons after treatment with retinoic acid. When transplanted into the striatum of adult nude mice, transduced NT2N neurons survived, engrafted, and continued to express the reporter gene for long-term time points in vivo. Furthermore, transplantation of NT2N neurons genetically modified to express nerve growth factor significantly attenuated cognitive dysfunction following traumatic brain injury in mice. These results demonstrate that defined populations of genetically modified human NT2N neurons are a practical and effective platform for stable ex vivo gene delivery into the CNS.[1]

References

  1. Genetically modified NT2N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury. Watson, D.J., Longhi, L., Lee, E.B., Fulp, C.T., Fujimoto, S., Royo, N.C., Passini, M.A., Trojanowski, J.Q., Lee, V.M., McIntosh, T.K., Wolfe, J.H. J. Neuropathol. Exp. Neurol. (2003) [Pubmed]
 
WikiGenes - Universities