A novel rabconnectin-3- binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca(2+)-dependent exocytosis of neurotransmitter.
BACKGROUND: Rab3A, a member of the Rab3 small G protein family, regulates Ca2+-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP) and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP). We have recently found a novel protein, named rabconnectin-3, which is co-immunoprecipitated with Rab3 GEP or GAP from the extract of the crude synaptic vesicle (CSV) fraction of rat brain. Rabconnectin-3 is abundantly expressed in the brain where it is associated with synaptic vesicles. We have found that two more proteins are co-immunoprecipitated with Rab3 GEP from the CSV fraction of rat brain. We attempted here to isolate and characterize one of them. RESULTS: We determined its partial amino acid sequence, cloned its cDNA from a human cDNA library, and determined its primary structure. The protein consisted of 1490 amino acids (aa) and showed a calculated molecular weight of 163808. The protein had 7 WD domains. The protein was abundantly expressed in the brain where it co-localized with rabconnectin-3 on synaptic vesicles. The protein formed a stable complex with rabconnectin-3. We named this protein rabconnectin-3beta and renamed rabconnectin-3 rabconnectin-3alpha. Rabconnectin-3beta, but not rabconnectin-3alpha, directly bound Rab3 GEP. Neither rabconnectin-3alpha nor -3beta directly bound Rab3 GAP. CONCLUSION: These results indicate that rabconnectin-3 consists of the alpha and beta subunits and binds directly Rab3 GEP through the beta subunit and indirectly Rab3 GAP through an unidentified molecule(s).[1]References
- A novel rabconnectin-3-binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca(2+)-dependent exocytosis of neurotransmitter. Kawabe, H., Sakisaka, T., Yasumi, M., Shingai, T., Izumi, G., Nagano, F., Deguchi-Tawarada, M., Takeuchi, M., Nakanishi, H., Takai, Y. Genes Cells (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









