The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by long-term feeding of n-3 fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils.

Hypocholesterolemic activity of dietary polyunsaturated fatty acids is observed after relatively short-term but not long-term feedings, and their long-term feedings are suspected to accelerate aging through tissue accumulation of lipid peroxides and age pigments (lipofuscin). To define the long-term effects of fats and oils in more detail, female mice were fed a conventional basal diet supplemented with lard ( Lar), high-linoleic (n-6) safflower oil (Saf), rapeseed oil (Rap), high-alpha-linolenic (n-3) perilla oil ( Per), or a mixture of ethyl docosahexaenoate and soybean oil (DHA/Soy) from 17 weeks to 71 weeks of age. The DHA/Soy and Per groups had decreased serum cholesterol levels compared with the Lar and Saf groups, but the difference between the Lar and Saf groups was not significant. The 3-hydroxy-3-methyglutary-CoA (HMG-CoA) reductase activity in the liver was also significantly lower in the Per and DHA/Soy groups. However, no significant difference in lipofuscin contents in the brain and liver was observed among the 5 dietary groups, despite significant differences in peroxidizability indices of the dietary and/or tissue lipids. These results indicate that n-3 fatty acid-rich oils are hypocholesterolemic by suppressing hepatic HMG-CoA reductase activity compared with animal fats and high-linoleic (n-6) oil, but tissue lipofuscin contents are not affected by a long-term feeding of fats and oils with different degree of unsaturation in mice.[1]

References

  1. Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by long-term feeding of n-3 fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils. Du, C., Sato, A., Watanabe, S., Wu, C.Z., Ikemoto, A., Ando, K., Kikugawa, K., Fujii, Y., Okuyama, H. Biol. Pharm. Bull. (2003) [Pubmed]
 
WikiGenes - Universities