The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis.

The p38 MAPK pathway regulates multiple neutrophil functional responses via activation of the serine-threonine kinase MAPK-activated protein kinase 2 (MAPKAPK2). To identify substrates of MAPKAPK2 that mediate these responses, a proteomic approach was used in which in vitro phosphorylation of neutrophil lysates by exogenously added active recombinant MAPKAPK2 was followed by protein separation using two-dimensional electrophoresis. Peptide mass fingerprinting of peptides defined by MALDI-MS was then utilized to identify phosphorylated proteins detected by autoradiography. Six candidate substrates were identified, including the p16 subunit of the seven-member Arp2/3 complex (p16-Arc). In vitro studies confirmed that MAPKAPK2 interacts with and phosphorylates the A isoform, but not the B isoform, of p16-Arc with a stoichiometry of 0.6 to 0. 7. MAPKAPK2 also phosphorylated p16-Arc in intact Arp2/3 complexes precipitated from neutrophil lysates. Mutation of serine-77 to alanine on the A isoform prevented phosphorylation by MAPKAPK2. The ability of MAPKAPK2 to phosphorylate one isoform of p16-Arc suggests a possible mechanism by which the p38 MAPK cascade regulates remodeling of the actin cytoskeleton.[1]

References

  1. Identification of the p16-Arc subunit of the Arp 2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. Singh, S., Powell, D.W., Rane, M.J., Millard, T.H., Trent, J.O., Pierce, W.M., Klein, J.B., Machesky, L.M., McLeish, K.R. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities