The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A novel enzyme, D-3-hydroxyaspartate aldolase from Paracoccus denitrificans IFO 13301: purification, characterization, and gene cloning.

A novel enzyme, D-3-hydroxyaspartate aldolase (D-HAA), catalyzing the conversion of D-3-hydroxyaspartate to glyoxylate plus glycine, was purified to homogeneity from Paracoccus denitrificans IFO 13301. D-HAA is strictly D-specific as to the alpha-position, whereas the enzyme does not distinguish between threo and erythro forms at the beta-position. In addition to D-3-hydroxyaspartate, the enzyme also acts on d-threonine, D-3-3,4-dihydroxyphenylserine, D-3-3,4-methylenedioxyphenylserine, and D-3-phenylserine. The D-HAA gene was cloned and sequenced. The gene contains an open reading frame consisting of 1,161 nucleotides corresponding to 387 amino acid residues. The predicted amino acid sequence displayed 35% and 22% identity with that of the D-threonine aldolase of Arthrobacter sp. DK-38 and Alcaligenes xylosoxidan IFO 12669, respectively. This is the first paper reporting both a purified enzyme with D-3-hydroxyaspartate aldolase activity and also its gene cloning.[1]

References

  1. A novel enzyme, D-3-hydroxyaspartate aldolase from Paracoccus denitrificans IFO 13301: purification, characterization, and gene cloning. Liu, J.Q., Dairi, T., Itoh, N., Kataoka, M., Shimizu, S. Appl. Microbiol. Biotechnol. (2003) [Pubmed]
 
WikiGenes - Universities