The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Truncated estrogen receptor product-1 stimulates estrogen receptor alpha transcriptional activity by titration of repressor proteins.

The truncated estrogen receptor product-1 (TERP-1, or TERP) is a pituitary-specific isoform of estrogen receptor alpha (ERalpha), and its expression is regulated by estrogen. TERP modulates the transcriptional activity of ERalpha but has no independent effect on transcription of estrogen-response element-containing promoters. At low concentrations, TERP stimulates ERalpha transcriptional activity in transient transfection assays. At TERP concentrations equal to or greater than full-length ERalpha, TERP forms dimers with ERalpha and reduces both ligand-dependent and -independent transcription. A dimerization mutant of TERP, TERP L509R, stimulated ERalpha transcription at all concentrations. We hypothesized that TERP stimulates ERalpha transcriptional activity by titrating suppressors of ERalpha activity. We found that repressor of estrogen receptor activity ( REA), originally isolated from human breast cancer cells, is present in mouse pituitary gonadotrope cell lines. Levels of REA vary slightly throughout the rat reproductive cycle, but TERP mRNA and protein vary much more dramatically. In transfection experiments, REA suppressed ERalpha transcriptional activity, and TERP L509R was able to alleviate transcriptional suppression by REA. In glutathione S-transferase pull-down assays, TERP bound to REA more efficiently than did ERalpha at equivalent concentrations, suggesting that REA will preferentially bind to TERP. Our findings suggest that the stimulation of pituitary ERalpha activity by low concentrations of TERP can occur by titration of corepressors such as REA.[1]

References

 
WikiGenes - Universities