The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

KCC2 mediates NH4+ uptake in cultured rat brain neurons.

Elevated levels of NH4+ in the brain impair neuronal function. We studied the effects of NH4+ on postsynaptic inhibition of cultured rat brain neurons using whole cell recording under nominally HCO3- -free conditions. Application of NH4+ shifted the reversal potentials for spontaneous inhibitory postsynaptic currents and currents elicited by dendritic GABA applications in a positive direction because [Cl-]i increased. The positive shift of the reversal potentials of GABA-induced Cl- currents was equal on equimolar elevation of [NH4+]o or [K+]o, respectively. The NH4+-induced increase in [Cl-]i was reversed by an inhibitor of cation-anion cotransport, furosemide (0.1 mM), but not by bumetanide (0.01 mM) or by replacement of [Na+]o by Li+. We conclude that neuron-specific K-Cl cotransporter (KCC2) transports NH4+ similar to K+. Despite this fact, the small increase of [NH4+]o during metabolic encephalopathies will barely elevate [Cl-]i. However, an impairment of neuronal function may result because KCC2 provides a pathway to accumulate NH4+, and thereby, a continuous acid load to neurons.[1]

References

  1. KCC2 mediates NH4+ uptake in cultured rat brain neurons. Liu, X., Titz, S., Lewen, A., Misgeld, U. J. Neurophysiol. (2003) [Pubmed]
 
WikiGenes - Universities