The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Drenural     3-butylamino-4-phenoxy-5- sulfamoyl-benzoic...

Synonyms: Bumedyl, Burinex, Fordiuran, Miccil, bumetanide, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Fordiuran

 

Psychiatry related information on Fordiuran

 

High impact information on Fordiuran

  • The transport mechanisms involved include the cystic fibrosis transmembrane conductance regulator (CFTR) present in the apical membrane of the cystic cells and a bumetanide-sensitive transporter located in the basolateral membrane [7].
  • The NKCC1 blocker bumetanide shifted E(Cl) negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo [8].
  • We show here that a (Na+)-(K+)-(2Cl-) cotransporter, NKCC1, is required for this Cl- current, in that ORNs deficient in Nkcc1 or incubated with an NKCC blocker (bumetanide) lack the Cl- current [9].
  • COX-2 expression also increased after administration of the Na(+)/K(+)/2Cl(-) cotransport inhibitor, bumetanide [10].
  • Western blot analysis and immunoelectron microscopic studies showed that the loss of functional V2Rs had no significant effect on the basal expression levels of aquaporin-2 and the bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1) [11].
 

Chemical compound and disease context of Fordiuran

 

Biological context of Fordiuran

 

Anatomical context of Fordiuran

 

Associations of Fordiuran with other chemical compounds

 

Gene context of Fordiuran

  • To analyze whether the Na(+)/K(+)/Cl(-) cotransporter has a role in the mitogenic signal of normal cells, we measured the effect of bumetanide on ERK phosphorylation in human peripheral blood lymphocytes [30].
  • Use of Cl-free solutions and bumetanide reduced the ET-1-induced increases in Isc, indicating that ET-1 stimulates Cl secretion [31].
  • Ouabain (inhibitor of Na+,K(+)-ATPase) and bumetanide (inhibitor of Na(+)-K(+)-Cl- cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake [32].
  • This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl- secretion [33].
  • The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na(+)-coupled acid-base transport [34].
 

Analytical, diagnostic and therapeutic context of Fordiuran

  • We used ventriculo-cisternal perfusion (VCP) labeled with blue dextran with or without bumetanide and measured choroidal CSF production in anesthetized, and paralyzed, mechanically ventilated dogs [23].
  • CONCLUSIONS: In patients with severe CRI, a continuous intravenous infusion of bumetanide is more effective and less toxic than conventional intermittent bolus therapy [35].
  • Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter [18].
  • Light-cell generation was inhibited by 1 mM bumetanide during both oxy incubation and oxy/deoxy cycling, providing evidence that a bumetanide-sensitive, deoxy-independent pathway, previously described in circulating light SSRBCs, also contributes to the rehydration of high-density SSRBCs [36].
  • Thus, both furosemide and bumetanide showed a clear benificial effect on rat livers subjected to warm ischemia [12].

References

  1. Ischemic preconditioning stimulates sodium and proton transport in isolated rat hearts. Ramasamy, R., Liu, H., Anderson, S., Lundmark, J., Schaefer, S. J. Clin. Invest. (1995) [Pubmed]
  2. HCl-induced cell edema in rabbit esophageal epithelium: a bumetanide-sensitive process. Tobey, N.A., Cragoe, E.J., Orlando, R.C. Gastroenterology (1995) [Pubmed]
  3. Letter: Bumetanide in renal failure. McCormack, P. Lancet (1976) [Pubmed]
  4. Bumetanide-induced hyperamylaseaemia in patients with renal insufficiency. Lynggaard, F., Bjørndal, N. Lancet (1977) [Pubmed]
  5. Bumetanide reduces cerebral edema formation in rats with diabetic ketoacidosis. Lam, T.I., Anderson, S.E., Glaser, N., O'Donnell, M.E. Diabetes (2005) [Pubmed]
  6. Effects of water deprivation on the pharmacokinetics and pharmacodynamics of bumetanide in rats. Huang, J.Y., Kim, O.N., Lee, S.H., Lee, M.G. Biopharmaceutics & drug disposition. (1993) [Pubmed]
  7. Epithelial transport in polycystic kidney disease. Sullivan, L.P., Wallace, D.P., Grantham, J.J. Physiol. Rev. (1998) [Pubmed]
  8. NKCC1 transporter facilitates seizures in the developing brain. Dzhala, V.I., Talos, D.M., Sdrulla, D.A., Brumback, A.C., Mathews, G.C., Benke, T.A., Delpire, E., Jensen, F.E., Staley, K.J. Nat. Med. (2005) [Pubmed]
  9. Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Reisert, J., Lai, J., Yau, K.W., Bradley, J. Neuron (2005) [Pubmed]
  10. Role of p38 in the regulation of renal cortical cyclooxygenase-2 expression by extracellular chloride. Cheng, H.F., Wang, J.L., Zhang, M.Z., McKanna, J.A., Harris, R.C. J. Clin. Invest. (2000) [Pubmed]
  11. Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. Yun, J., Schöneberg, T., Liu, J., Schulz, A., Ecelbarger, C.A., Promeneur, D., Nielsen, S., Sheng, H., Grinberg, A., Deng, C., Wess, J. J. Clin. Invest. (2000) [Pubmed]
  12. Decrease of ischemic injury to the isolated perfused rat liver by loop diuretics. Fiegen, R.J., Rauen, U., Hartmann, M., Decking, U.K., de Groot, H. Hepatology (1997) [Pubmed]
  13. Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. O'donnell, M.E., Lam, T.I., Tran, L.Q., Foroutan, S., Anderson, S.E. J. Cereb. Blood Flow Metab. (2006) [Pubmed]
  14. Cisplatin-induced apoptosis of mesothelioma cells is affected by potassium ion flux modulator amphotericin B and bumetanide. Marklund, L., Henriksson, R., Grankvist, K. Int. J. Cancer (2001) [Pubmed]
  15. Xipamide. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy. Prichard, B.N., Brogden, R.N. Drugs (1985) [Pubmed]
  16. Stimulation of bumetanide-sensitive Na+/K+/Cl- cotransport by different mitogens in synchronized human skin fibroblasts is essential for cell proliferation. Panet, R., Atlan, H. J. Cell Biol. (1991) [Pubmed]
  17. The role of transmembrane domain 2 in cation transport by the Na-K-Cl cotransporter. Isenring, P., Jacoby, S.C., Forbush, B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  18. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Xu, J.C., Lytle, C., Zhu, T.T., Payne, J.A., Benz, E., Forbush, B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  19. The stimulation of Na,K,Cl cotransport and of system A for neutral amino acid transport is a mechanism for cell volume increase during the cell cycle. Bussolati, O., Uggeri, J., Belletti, S., Dall'Asta, V., Gazzola, G.C. FASEB J. (1996) [Pubmed]
  20. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. Hagenbuch, B., Meier, P.J. J. Clin. Invest. (1994) [Pubmed]
  21. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. Dharmsathaphorn, K., Mandel, K.G., Masui, H., McRoberts, J.A. J. Clin. Invest. (1985) [Pubmed]
  22. Na-K-2Cl cotransporter gene expression and function during enterocyte differentiation. Modulation of Cl- secretory capacity by butyrate. Matthews, J.B., Hassan, I., Meng, S., Archer, S.Y., Hrnjez, B.J., Hodin, R.A. J. Clin. Invest. (1998) [Pubmed]
  23. Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. Javaheri, S., Wagner, K.R. J. Clin. Invest. (1993) [Pubmed]
  24. Expression of the bumetanide-sensitive Na-K-Cl cotransporter BSC2 is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium. Topper, J.N., Wasserman, S.M., Anderson, K.R., Cai, J., Falb, D., Gimbrone, M.A. J. Clin. Invest. (1997) [Pubmed]
  25. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. Brugnara, C., Kopin, A.S., Bunn, H.F., Tosteson, D.C. J. Clin. Invest. (1985) [Pubmed]
  26. Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate. Forte, L.R., Eber, S.L., Turner, J.T., Freeman, R.H., Fok, K.F., Currie, M.G. J. Clin. Invest. (1993) [Pubmed]
  27. Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Palma, E., Amici, M., Sobrero, F., Spinelli, G., Di Angelantonio, S., Ragozzino, D., Mascia, A., Scoppetta, C., Esposito, V., Miledi, R., Eusebi, F. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  28. Cloning and functional characterization of the bile acid-sensitive methotrexate carrier from rat liver cells. Honscha, W., Dötsch, K.U., Thomsen, N., Petzinger, E. Hepatology (2000) [Pubmed]
  29. Na:K:2Cl cotransporter (NKCC) of intestinal epithelial cells. Surface expression in response to cAMP. D'Andrea, L., Lytle, C., Matthews, J.B., Hofman, P., Forbush, B., Madara, J.L. J. Biol. Chem. (1996) [Pubmed]
  30. Na(+)/K(+)/Cl(-) cotransporter activates mitogen-activated protein kinase in fibroblasts and lymphocytes. Panet, R., Eliash, M., Pick, M., Atlan, H. J. Cell. Physiol. (2002) [Pubmed]
  31. Effects of endothelin-1 on epithelial ion transport in human airways. Blouquit, S., Sari, A., Lombet, A., D'herbomez, M., Naline, E., Matran, R., Chinet, T. Am. J. Respir. Cell Mol. Biol. (2003) [Pubmed]
  32. Endothelin 1 stimulates Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport through ETA receptors and protein kinase C-dependent pathway in cerebral capillary endothelium. Kawai, N., Yamamoto, T., Yamamoto, H., McCarron, R.M., Spatz, M. J. Neurochem. (1995) [Pubmed]
  33. Activation of CFTR by ASBT-mediated bile salt absorption. Bijvelds, M.J., Jorna, H., Verkade, H.J., Bot, A.G., Hofmann, F., Agellon, L.B., Sinaasappel, M., de Jonge, H.R. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  34. NKCC1 and NHE1 are abundantly expressed in the basolateral plasma membrane of secretory coil cells in rat, mouse, and human sweat glands. Nejsum, L.N., Praetorius, J., Nielsen, S. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  35. Loop diuretics for chronic renal insufficiency: a continuous infusion is more efficacious than bolus therapy. Rudy, D.W., Voelker, J.R., Greene, P.K., Esparza, F.A., Brater, D.C. Ann. Intern. Med. (1991) [Pubmed]
  36. Rehydration of high-density sickle erythrocytes in vitro. Holtzclaw, J.D., Jiang, M., Yasin, Z., Joiner, C.H., Franco, R.S. Blood (2002) [Pubmed]
 
WikiGenes - Universities