Ras is a mediator of TGFbeta1 signaling in developing chick ciliary ganglion neurons.
Large-conductance Ca(2+)-activated K(+) channels (K(Ca)) in chick ciliary ganglion neurons are regulated by target-derived TGFbeta1. Here we show that TGFbeta1 stimulation of K(Ca) expression was blocked by the structurally dissimilar Ras protein farnesyl transferase inhibitors manumycin-A and FTI-277. A similar effect was produced in ciliary neurons overexpressing RasN17, a widely used dominant-negative form of Ras. Moreover, TGFbeta1-evoked increases in phosphorylation of SMAD2 were reduced by manumycin-A, suggesting that Ras-dependent transduction cascades activated by TGFbeta1 feed back onto SMAD signaling. Thus, Ras is a mediator of pleiotropic TGFbeta1 signaling in developing neurons.[1]References
- Ras is a mediator of TGFbeta1 signaling in developing chick ciliary ganglion neurons. Lhuillier, L., Dryer, S.E. Brain Res. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg