The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Renal inactivation, mineralocorticoid generation, and 11beta-hydroxysteroid dehydrogenase inhibition ameliorate the antimineralocorticoid effect of progesterone in vivo.

Progesterone (P) is a strong mineralocorticoid receptor ( MR) antagonist in vitro. The high P concentrations seen in normal pregnancy only moderately increase renin and aldosterone concentrations. In previous in vitro studies we hypothesized that this may be explained by intrarenal conversion of P to less potent metabolites. To investigate the in vivo anti- MR potency of P, we performed an infusion study in patients with adrenal insufficiency (n = 8). They omitted 9alpha-fluorocortisol for 4 d and hydrocortisone for 0.5 d before a continuous iv infusion of aldosterone for 8.5 h, with an additional iv P infusion commenced at 4 h. During aldosterone infusions the initially elevated urinary sodium to potassium ratio decreased significantly. Despite the 1000-fold excess of P over aldosterone, the urinary sodium to potassium ratio and urinary sodium excretion increased only slightly after 3 h of P infusion. We detected inhibition of renal 11beta-hydroxysteroid dehydrogenase type 2 by P, thus giving cortisol/prednisolone access to the MR. Urinary and plasma concentrations of 17alpha-hydroxyprogesterone, a major metabolite of renal P metabolism, and those of serum androstenedione and deoxycorticosterone, a mineralocorticoid itself, increased significantly during P infusion. This supports the hypothesis of an effective protection of the MR from P by efficient extraadrenal downstream conversion of P.[1]

References

 
WikiGenes - Universities