The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity.

The metastasis-associated protein MTA1 has been shown to express differentially to high levels in metastatic cells. MTA2, which is homologous to MTA1, is a component of the NuRD ATP-dependent chromatin remodeling and histone deacetylase complex. Here we report evidence that although both human MTA1 and MTA2 repress transcription specifically, are located in the nucleus, and contain associated histone deacetylase activity, they exist in two biochemically distinct protein complexes and may perform different functions pertaining to tumor metastasis. Specifically, both MTA1 and MTA2 complexes exert histone deacetylase activity. However, the MTA1 complex contained HDAC1/2, RbAp46/48, and MBD3, but not Sin3 or Mi2, two important components of the MTA2 complex. Moreover, the MTA2 complex is similar to the HDAC1 complex, suggesting a housekeeping role of the MTA2 complex. The MTA1 complex could be further separated, resulting in a core MTA1- HDAC complex, showing that the histone deacetylase activity and transcriptional repression activity were integral properties of the MTA1 complex. Finally, MTA1, unlike MTA2, did not interact with the pleotropic transcription factor YY1 or the immunophilin FKBP25. We suggest that MTA1 associates with a different set of transcription factors from MTA2 and that this property may contribute to the metastatic potential of cells overexpressing MTA1. We also report the finding of human MTA3, which is highly homologous to both MTA1 and MTA2. However, MTA3 does not repress transcription to a significant level and appears to have a diffused pattern of subcellular localization, suggesting a biological role distinct from that of the other two MTA proteins.[1]

References

 
WikiGenes - Universities