The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans.

In Escherichia coli infection, the implications of fluoroquinolone (FQ) and extended-spectrum cephalosporin plus cephamycin (AmpC) resistance for phylogenetic origin and virulence potential are undefined, as is the influence of ecological context on these associations. Accordingly, 106 E. coli isolates exhibiting FQ and/or AmpC resistance and 98 susceptible isolates were compared with regard to phylogenetic background and virulence profiles, stratified by host group (104 predominantly extraintestinal human isolates and 100 predominantly intestinal cattle and swine isolates). Although resistant isolates exhibited significant shifts in phylogenetic distribution and virulence profiles, human and animal isolates exhibited different phylogenetic shifts, and only among human isolates did resistance predict reduced virulence. Evidence for similar strains being resistant versus susceptible was scant. The O15:K52:H1 clonal group and the closely related "clonal group A" featured prominently among resistant and susceptible human isolates, respectively. Thus, in E. coli, antibiotic resistance predicts phylogenetic background and virulence potential in a complex, context-dependent fashion.[1]

References

 
WikiGenes - Universities