The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes.

Calpains are a family of non-lysosomal cysteine proteases. Recent studies have identified a member of the calpain family of proteases, calpain 10, as a putative diabetes-susceptibility gene that may be involved in the development of type 2 diabetes. Inhibition of calpain activity has been shown to reduce insulin-stimulated glucose uptake in isolated rat-muscle strips and adipocytes. In this report, we examine the mechanism by which calpain affects insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Inhibition of calpain activity resulted in approx. a 60% decrease in insulin-stimulated glucose uptake. Furthermore, inhibition of calpain activity prevented the translocation of insulin-responsive glucose transporter 4 (GLUT4) vesicles to the plasma membrane, as demonstrated by fluorescent microscopy of whole cells and isolated plasma membranes; it did not, however, alter the total GLUT4 protein content. While inhibition of calpain did not affect the insulin-mediated proximal steps of the phosphoinositide 3-kinase pathway, it did prevent the insulin-stimulated cortical actin reorganization required for GLUT4 translocation. Specific inhibition of calpain 10 by antisense expression reduced insulin- stimulated GLUT4 translocation and actin reorganization. Based on these findings, we propose a role for calpain in the actin reorganization required for insulin-stimulated GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. These studies identify calpain as a novel factor involved in GLUT4 vesicle trafficking and suggest a link between calpain activity and the development of type 2 diabetes.[1]

References

  1. Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes. Paul, D.S., Harmon, A.W., Winston, C.P., Patel, Y.M. Biochem. J. (2003) [Pubmed]
 
WikiGenes - Universities