In vitro mutagenesis of potential N-glycosylation sites of arylsulfatase A. Effects on glycosylation, phosphorylation, and intracellular sorting.
The correct intracellular sorting of lysosomal enzymes such as arylsulfatase A depends on the presence of mannose 6-phosphate residues on high mannose type oligosaccharides. The arylsulfatase A cDNA contains three potential N-glycosylation sites, two of which are utilized. We have mutated one or two of the N-glycosylation sites and analyzed the glycosylation, phosphorylation, and intracellular sorting of the mutant arylsulfatase A polypeptides. The results show that each of the three glycosylation sites (I, II, and III) can be glycosylated, but glycosylation at sites I and II is mutually exclusive. In mutants with one oligosaccharide side chain at positions I, II, or III all side chains can acquire mannose 6-phosphate residues irrespective of their location. This demonstrates spatial flexibility of the phosphotransferase, which specifically recognizes lysosomal enzymes and initiates the addition of mannose 6-phosphate residues on oligosaccharide side chains. However, these mutants have different intracellular sorting efficiencies and seem to use different (mannose 6-phosphate receptor-dependent and -independent) sorting pathways.[1]References
- In vitro mutagenesis of potential N-glycosylation sites of arylsulfatase A. Effects on glycosylation, phosphorylation, and intracellular sorting. Gieselmann, V., Schmidt, B., von Figura, K. J. Biol. Chem. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg