The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

In vitro mutagenesis of potential N-glycosylation sites of arylsulfatase A. Effects on glycosylation, phosphorylation, and intracellular sorting.

The correct intracellular sorting of lysosomal enzymes such as arylsulfatase A depends on the presence of mannose 6-phosphate residues on high mannose type oligosaccharides. The arylsulfatase A cDNA contains three potential N-glycosylation sites, two of which are utilized. We have mutated one or two of the N-glycosylation sites and analyzed the glycosylation, phosphorylation, and intracellular sorting of the mutant arylsulfatase A polypeptides. The results show that each of the three glycosylation sites (I, II, and III) can be glycosylated, but glycosylation at sites I and II is mutually exclusive. In mutants with one oligosaccharide side chain at positions I, II, or III all side chains can acquire mannose 6-phosphate residues irrespective of their location. This demonstrates spatial flexibility of the phosphotransferase, which specifically recognizes lysosomal enzymes and initiates the addition of mannose 6-phosphate residues on oligosaccharide side chains. However, these mutants have different intracellular sorting efficiencies and seem to use different (mannose 6-phosphate receptor-dependent and -independent) sorting pathways.[1]

References

 
WikiGenes - Universities