The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors.

The SWI1, SWI2, and SWI3 proteins, which are required for regulated transcription of numerous yeast genes, were found also to be essential for rat glucocorticoid receptor function in yeast; the receptor failed to activate transcription in strains with mutations in the SWI1, SWI2, or SWI3 genes. Certain mutations in genes encoding components of chromatin, identified as suppressors of swi mutations, partially relieved the SWI- requirement for receptor function. Immunoprecipitation of glucocorticoid receptor derivatives from wild-type (SWI+) yeast extracts coprecipitated the SWI3 protein; such receptor-SWI3 complexes were not detected in swi1- or swi2- mutant strains, implying that a complex of multiple SWI proteins may associate with the receptor. Prior incubation of a Drosophila embryo transcription extract with the yeast SWI3-specific antibody inhibited receptor function in vitro whereas the antibody had no effect if added after initiation complex formation. Thus, positive regulation by the glucocorticoid receptor in vivo and in vitro appears to require its interaction, at an early step, with one or more SWI proteins.[1]

References

  1. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Yoshinaga, S.K., Peterson, C.L., Herskowitz, I., Yamamoto, K.R. Science (1992) [Pubmed]
 
WikiGenes - Universities