The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SNF2  -  Snf2p

Saccharomyces cerevisiae S288c

Synonyms: ATP-dependent helicase SNF2, GAM1, HAF1, RIC1, Regulatory protein GAM1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SNF2


High impact information on SNF2

  • Here we show that stable promoter occupancy by SWI/SNF and SAGA in the absence of transcription activators requires the bromodomains of the Swi2/Snf2 and Gcn5 subunits, respectively, and nucleosome acetylation [3].
  • BRG1 shares extensive sequence similarity to Drosophila brahma, an activator of homeotic gene expression, and the yeast transcriptional activator SNF2/SW12 [4].
  • Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription [5].
  • In addition, both brm and SNF2 contain a 77 amino acid motif that is found in other Drosophila, yeast, and human regulatory proteins and may be characteristic of a new family of regulatory proteins [6].
  • SWI1, SWI2, and SWI5 are required for transcription from sequences physically separate from and independent of the CACGA4 sequences [7].

Biological context of SNF2


Anatomical context of SNF2

  • In addition, a complex containing one of the SNF2/SWI2 homologues and having an in vitro activity similar to the yeast complex has been partially purified from HeLa cells [13].

Associations of SNF2 with chemical compounds

  • In order to investigate this regulation, we transformed wild-type yeast with a PEM1 promoter-lacZ fusion and isolated two mutants, named ric1 and ric2 (regulation by myo-inositol and choline), exhibiting decreased PEM1 expression [14].
  • The SNF2 gene was predicted to encode a 194 kDa highly charged protein with a glutamine-rich tract [15].
  • Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors [16].
  • Both STH1 and SNF2 contain a putative nucleoside triphosphate-binding site and sequences resembling the consensus helicase motifs [17].
  • Nuclear localization of this SNF2-like putative helicase is dependent on a nuclear localization sequence located in the NH2-terminal region [18].

Physical interactions of SNF2

  • SNF11 interacts with SNF2 in vitro and copurifies with the SNF-SWI complex from yeast cells [19].
  • Stimulation of GAL4 binding by the complex was abolished by a mutant SWI2 subunit, and was increased by the presence of a histone-binding protein, nucleoplasmin [20].
  • We identified Swh3 as a protein that interacts with the N terminus of Snf2 in the two-hybrid system [21].
  • Swi1 is in a complex with Snf2 in C. albicans, and both proteins are localized in the nucleus independent of the growth form [22].

Regulatory relationships of SNF2

  • Mutation of the specific negative regulator of phospholipid synthesis encoded by OPI1 suppressed the inositol auxotrophy of swi2 mutants [23].

Other interactions of SNF2


Analytical, diagnostic and therapeutic context of SNF2


  1. Prokaryotic members of a new family of putative helicases with similarity to transcription activator SNF2. Kolstø, A.B., Bork, P., Kvaløy, K., Lindback, T., Grønstadt, A., Kristensen, T., Sander, C. J. Mol. Biol. (1993) [Pubmed]
  2. Cloning of an SNF2/SWI2-related protein that binds specifically to the SPH motifs of the SV40 enhancer and to the HIV-1 promoter. Sheridan, P.L., Schorpp, M., Voz, M.L., Jones, K.A. J. Biol. Chem. (1995) [Pubmed]
  3. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Hassan, A.H., Prochasson, P., Neely, K.E., Galasinski, S.C., Chandy, M., Carrozza, M.J., Workman, J.L. Cell (2002) [Pubmed]
  4. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Dunaief, J.L., Strober, B.E., Guha, S., Khavari, P.A., Alin, K., Luban, J., Begemann, M., Crabtree, G.R., Goff, S.P. Cell (1994) [Pubmed]
  5. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Peterson, C.L., Herskowitz, I. Cell (1992) [Pubmed]
  6. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C., Kennison, J.A. Cell (1992) [Pubmed]
  7. Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Breeden, L., Nasmyth, K. Cell (1987) [Pubmed]
  8. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Laurent, B.C., Treich, I., Carlson, M. Genes Dev. (1993) [Pubmed]
  9. A short-range gradient of histone H3 acetylation and Tup1p redistribution at the promoter of the Saccharomyces cerevisiae SUC2 gene. Boukaba, A., Georgieva, E.I., Myers, F.A., Thorne, A.W., López-Rodas, G., Crane-Robinson, C., Franco, L. J. Biol. Chem. (2004) [Pubmed]
  10. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Ebbert, R., Birkmann, A., Schüller, H.J. Mol. Microbiol. (1999) [Pubmed]
  11. Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Neigeborn, L., Rubin, K., Carlson, M. Genetics (1986) [Pubmed]
  12. Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex. Biswas, D., Imbalzano, A.N., Eriksson, P., Yu, Y., Stillman, D.J. Mol. Cell. Biol. (2004) [Pubmed]
  13. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Muchardt, C., Sardet, C., Bourachot, B., Onufryk, C., Yaniv, M. Nucleic Acids Res. (1995) [Pubmed]
  14. The SNF2/SWI2/GAM1/TYE3/RIC1 gene is involved in the coordinate regulation of phospholipid synthesis in Saccharomyces cerevisiae. Kodaki, T., Hosaka, K., Nikawa, J., Yamashita, S. J. Biochem. (1995) [Pubmed]
  15. The GAM1/SNF2 gene of Saccharomyces cerevisiae encodes a highly charged nuclear protein required for transcription of the STA1 gene. Yoshimoto, H., Yamashita, I. Mol. Gen. Genet. (1991) [Pubmed]
  16. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Yoshinaga, S.K., Peterson, C.L., Herskowitz, I., Yamamoto, K.R. Science (1992) [Pubmed]
  17. An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Laurent, B.C., Yang, X., Carlson, M. Mol. Cell. Biol. (1992) [Pubmed]
  18. Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Lee, D.W., Zhang, K., Ning, Z.Q., Raabe, E.H., Tintner, S., Wieland, R., Wilkins, B.J., Kim, J.M., Blough, R.I., Arceci, R.J. Cancer Res. (2000) [Pubmed]
  19. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Treich, I., Cairns, B.R., de los Santos, T., Brewster, E., Carlson, M. Mol. Cell. Biol. (1995) [Pubmed]
  20. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Côté, J., Quinn, J., Workman, J.L., Peterson, C.L. Science (1994) [Pubmed]
  21. Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf-related complex with an essential function in Saccharomyces cerevisiae. Treich, I., Carlson, M. Mol. Cell. Biol. (1997) [Pubmed]
  22. The Swi/Snf chromatin remodeling complex is essential for hyphal development in Candida albicans. Mao, X., Cao, F., Nie, X., Liu, H., Chen, J. FEBS Lett. (2006) [Pubmed]
  23. INO1-100: an allele of the Saccharomyces cerevisiae INO1 gene that is transcribed without the action of the positive factors encoded by the INO2, INO4, SWI1, SWI2 and SWI3 genes. Swift, S., McGraw, P. Nucleic Acids Res. (1995) [Pubmed]
  24. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Hirschhorn, J.N., Brown, S.A., Clark, C.D., Winston, F. Genes Dev. (1992) [Pubmed]
  25. Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Laurent, B.C., Treitel, M.A., Carlson, M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  26. Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Shinohara, M., Shita-Yamaguchi, E., Buerstedde, J.M., Shinagawa, H., Ogawa, H., Shinohara, A. Genetics (1997) [Pubmed]
  27. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Shaked, H., Melamed-Bessudo, C., Levy, A.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
WikiGenes - Universities